Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 tita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2013-10, Vol.33 (7), p.4337-4342
Hauptverfasser: Onder, Sakip, Kok, Fatma Nese, Kazmanli, Kursat, Urgen, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4342
container_issue 7
container_start_page 4337
container_title Materials Science & Engineering C
container_volume 33
creator Onder, Sakip
Kok, Fatma Nese
Kazmanli, Kursat
Urgen, Mustafa
description In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. •Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF
doi_str_mv 10.1016/j.msec.2013.06.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692318298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092849311300386X</els_id><sourcerecordid>1418146347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</originalsourceid><addsrcrecordid>eNqNkV1rHCEYhaW0JJuPP9CL4mUKmYmvOo5Cb0qapIF89CLtrTjq7rrsjFudCd1_H5dNe9kWBOXlOeeVcxB6D6QGAuJiVffZ25oSYDURNaHtGzQD2bKKgIK3aEYUlRVXDA7RUc4rQoRkLT1Ah5QpIKyBGVrdm8Xgc5h6nKcuj2GcRu_wcutS_LU1G1MmHs9j6ssrDrics6dwfr_4-IBtLLNhkfEmRTfZIuu22JpxGV2w2CSLv_34gkdvl0P4OfkT9G5u1tmfvt7H6Pv11dPl1-ru8eb28vNdZTmlY9U0zDWCU9V1VkgnJXNOKmM99WJuaAvEWmkkJw6ajjveSkEE7QpBbQsNYcfobO9bvlXW5lH3IVu_XpvBxylrEIoykFTJf6OclziZUuI_UJDABeNtQeketSnmnPxcb1LoTdpqIHrXnF7pXXN615wmQpfmiujDq__U9d79kfyuqgCf9oAv2T0Hn3S2wQ8l9pC8HbWL4W_-L41OqZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418146347</pqid></control><display><type>article</type><title>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Onder, Sakip ; Kok, Fatma Nese ; Kazmanli, Kursat ; Urgen, Mustafa</creator><creatorcontrib>Onder, Sakip ; Kok, Fatma Nese ; Kazmanli, Kursat ; Urgen, Mustafa</creatorcontrib><description>In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. •Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2013.06.027</identifier><identifier>PMID: 23910351</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>(Ti,Mg)N coating ; Biocompatibility ; Body Fluids - chemistry ; Cathodic Arc PVD Technique ; Coated Materials, Biocompatible - chemistry ; Coatings ; Durapatite - chemistry ; Electrodes ; Humans ; Hydroxyapatite ; Magnesium ; Magnesium - chemistry ; Magnesium Compounds - chemistry ; Materials Testing - methods ; Microscopy, Electron, Scanning ; Nitrogen Compounds - chemistry ; Protective coatings ; Spectroscopy, Fourier Transform Infrared ; Surgical implants ; TiN coating ; Titanium ; Titanium - chemistry ; Titanium nitride ; X-Ray Diffraction</subject><ispartof>Materials Science &amp; Engineering C, 2013-10, Vol.33 (7), p.4337-4342</ispartof><rights>2013 Elsevier B.V.</rights><rights>2013.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</citedby><cites>FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2013.06.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23910351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onder, Sakip</creatorcontrib><creatorcontrib>Kok, Fatma Nese</creatorcontrib><creatorcontrib>Kazmanli, Kursat</creatorcontrib><creatorcontrib>Urgen, Mustafa</creatorcontrib><title>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. •Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF</description><subject>(Ti,Mg)N coating</subject><subject>Biocompatibility</subject><subject>Body Fluids - chemistry</subject><subject>Cathodic Arc PVD Technique</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coatings</subject><subject>Durapatite - chemistry</subject><subject>Electrodes</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium Compounds - chemistry</subject><subject>Materials Testing - methods</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nitrogen Compounds - chemistry</subject><subject>Protective coatings</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surgical implants</subject><subject>TiN coating</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium nitride</subject><subject>X-Ray Diffraction</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1rHCEYhaW0JJuPP9CL4mUKmYmvOo5Cb0qapIF89CLtrTjq7rrsjFudCd1_H5dNe9kWBOXlOeeVcxB6D6QGAuJiVffZ25oSYDURNaHtGzQD2bKKgIK3aEYUlRVXDA7RUc4rQoRkLT1Ah5QpIKyBGVrdm8Xgc5h6nKcuj2GcRu_wcutS_LU1G1MmHs9j6ssrDrics6dwfr_4-IBtLLNhkfEmRTfZIuu22JpxGV2w2CSLv_34gkdvl0P4OfkT9G5u1tmfvt7H6Pv11dPl1-ru8eb28vNdZTmlY9U0zDWCU9V1VkgnJXNOKmM99WJuaAvEWmkkJw6ajjveSkEE7QpBbQsNYcfobO9bvlXW5lH3IVu_XpvBxylrEIoykFTJf6OclziZUuI_UJDABeNtQeketSnmnPxcb1LoTdpqIHrXnF7pXXN615wmQpfmiujDq__U9d79kfyuqgCf9oAv2T0Hn3S2wQ8l9pC8HbWL4W_-L41OqZQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Onder, Sakip</creator><creator>Kok, Fatma Nese</creator><creator>Kazmanli, Kursat</creator><creator>Urgen, Mustafa</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</title><author>Onder, Sakip ; Kok, Fatma Nese ; Kazmanli, Kursat ; Urgen, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>(Ti,Mg)N coating</topic><topic>Biocompatibility</topic><topic>Body Fluids - chemistry</topic><topic>Cathodic Arc PVD Technique</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coatings</topic><topic>Durapatite - chemistry</topic><topic>Electrodes</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium Compounds - chemistry</topic><topic>Materials Testing - methods</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nitrogen Compounds - chemistry</topic><topic>Protective coatings</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surgical implants</topic><topic>TiN coating</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium nitride</topic><topic>X-Ray Diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Onder, Sakip</creatorcontrib><creatorcontrib>Kok, Fatma Nese</creatorcontrib><creatorcontrib>Kazmanli, Kursat</creatorcontrib><creatorcontrib>Urgen, Mustafa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onder, Sakip</au><au>Kok, Fatma Nese</au><au>Kazmanli, Kursat</au><au>Urgen, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>33</volume><issue>7</issue><spage>4337</spage><epage>4342</epage><pages>4337-4342</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. •Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23910351</pmid><doi>10.1016/j.msec.2013.06.027</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2013-10, Vol.33 (7), p.4337-4342
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_1692318298
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects (Ti,Mg)N coating
Biocompatibility
Body Fluids - chemistry
Cathodic Arc PVD Technique
Coated Materials, Biocompatible - chemistry
Coatings
Durapatite - chemistry
Electrodes
Humans
Hydroxyapatite
Magnesium
Magnesium - chemistry
Magnesium Compounds - chemistry
Materials Testing - methods
Microscopy, Electron, Scanning
Nitrogen Compounds - chemistry
Protective coatings
Spectroscopy, Fourier Transform Infrared
Surgical implants
TiN coating
Titanium
Titanium - chemistry
Titanium nitride
X-Ray Diffraction
title Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20substituted%20hydroxyapatite%20formation%20on%20(Ti,Mg)N%20coatings%20produced%20by%20cathodic%20arc%20PVD%20technique&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Onder,%20Sakip&rft.date=2013-10-01&rft.volume=33&rft.issue=7&rft.spage=4337&rft.epage=4342&rft.pages=4337-4342&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2013.06.027&rft_dat=%3Cproquest_cross%3E1418146347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418146347&rft_id=info:pmid/23910351&rft_els_id=S092849311300386X&rfr_iscdi=true