Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique
In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 tita...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2013-10, Vol.33 (7), p.4337-4342 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4342 |
---|---|
container_issue | 7 |
container_start_page | 4337 |
container_title | Materials Science & Engineering C |
container_volume | 33 |
creator | Onder, Sakip Kok, Fatma Nese Kazmanli, Kursat Urgen, Mustafa |
description | In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure.
•Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF |
doi_str_mv | 10.1016/j.msec.2013.06.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692318298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092849311300386X</els_id><sourcerecordid>1418146347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</originalsourceid><addsrcrecordid>eNqNkV1rHCEYhaW0JJuPP9CL4mUKmYmvOo5Cb0qapIF89CLtrTjq7rrsjFudCd1_H5dNe9kWBOXlOeeVcxB6D6QGAuJiVffZ25oSYDURNaHtGzQD2bKKgIK3aEYUlRVXDA7RUc4rQoRkLT1Ah5QpIKyBGVrdm8Xgc5h6nKcuj2GcRu_wcutS_LU1G1MmHs9j6ssrDrics6dwfr_4-IBtLLNhkfEmRTfZIuu22JpxGV2w2CSLv_34gkdvl0P4OfkT9G5u1tmfvt7H6Pv11dPl1-ru8eb28vNdZTmlY9U0zDWCU9V1VkgnJXNOKmM99WJuaAvEWmkkJw6ajjveSkEE7QpBbQsNYcfobO9bvlXW5lH3IVu_XpvBxylrEIoykFTJf6OclziZUuI_UJDABeNtQeketSnmnPxcb1LoTdpqIHrXnF7pXXN615wmQpfmiujDq__U9d79kfyuqgCf9oAv2T0Hn3S2wQ8l9pC8HbWL4W_-L41OqZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418146347</pqid></control><display><type>article</type><title>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Onder, Sakip ; Kok, Fatma Nese ; Kazmanli, Kursat ; Urgen, Mustafa</creator><creatorcontrib>Onder, Sakip ; Kok, Fatma Nese ; Kazmanli, Kursat ; Urgen, Mustafa</creatorcontrib><description>In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure.
•Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2013.06.027</identifier><identifier>PMID: 23910351</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>(Ti,Mg)N coating ; Biocompatibility ; Body Fluids - chemistry ; Cathodic Arc PVD Technique ; Coated Materials, Biocompatible - chemistry ; Coatings ; Durapatite - chemistry ; Electrodes ; Humans ; Hydroxyapatite ; Magnesium ; Magnesium - chemistry ; Magnesium Compounds - chemistry ; Materials Testing - methods ; Microscopy, Electron, Scanning ; Nitrogen Compounds - chemistry ; Protective coatings ; Spectroscopy, Fourier Transform Infrared ; Surgical implants ; TiN coating ; Titanium ; Titanium - chemistry ; Titanium nitride ; X-Ray Diffraction</subject><ispartof>Materials Science & Engineering C, 2013-10, Vol.33 (7), p.4337-4342</ispartof><rights>2013 Elsevier B.V.</rights><rights>2013.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</citedby><cites>FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2013.06.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23910351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onder, Sakip</creatorcontrib><creatorcontrib>Kok, Fatma Nese</creatorcontrib><creatorcontrib>Kazmanli, Kursat</creatorcontrib><creatorcontrib>Urgen, Mustafa</creatorcontrib><title>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure.
•Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF</description><subject>(Ti,Mg)N coating</subject><subject>Biocompatibility</subject><subject>Body Fluids - chemistry</subject><subject>Cathodic Arc PVD Technique</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coatings</subject><subject>Durapatite - chemistry</subject><subject>Electrodes</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium Compounds - chemistry</subject><subject>Materials Testing - methods</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nitrogen Compounds - chemistry</subject><subject>Protective coatings</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surgical implants</subject><subject>TiN coating</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium nitride</subject><subject>X-Ray Diffraction</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1rHCEYhaW0JJuPP9CL4mUKmYmvOo5Cb0qapIF89CLtrTjq7rrsjFudCd1_H5dNe9kWBOXlOeeVcxB6D6QGAuJiVffZ25oSYDURNaHtGzQD2bKKgIK3aEYUlRVXDA7RUc4rQoRkLT1Ah5QpIKyBGVrdm8Xgc5h6nKcuj2GcRu_wcutS_LU1G1MmHs9j6ssrDrics6dwfr_4-IBtLLNhkfEmRTfZIuu22JpxGV2w2CSLv_34gkdvl0P4OfkT9G5u1tmfvt7H6Pv11dPl1-ru8eb28vNdZTmlY9U0zDWCU9V1VkgnJXNOKmM99WJuaAvEWmkkJw6ajjveSkEE7QpBbQsNYcfobO9bvlXW5lH3IVu_XpvBxylrEIoykFTJf6OclziZUuI_UJDABeNtQeketSnmnPxcb1LoTdpqIHrXnF7pXXN615wmQpfmiujDq__U9d79kfyuqgCf9oAv2T0Hn3S2wQ8l9pC8HbWL4W_-L41OqZQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Onder, Sakip</creator><creator>Kok, Fatma Nese</creator><creator>Kazmanli, Kursat</creator><creator>Urgen, Mustafa</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</title><author>Onder, Sakip ; Kok, Fatma Nese ; Kazmanli, Kursat ; Urgen, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-553d56429bbc68d883dd89ace2e6fa2710cc8a840d15b4d4786062b9ac2c71503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>(Ti,Mg)N coating</topic><topic>Biocompatibility</topic><topic>Body Fluids - chemistry</topic><topic>Cathodic Arc PVD Technique</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coatings</topic><topic>Durapatite - chemistry</topic><topic>Electrodes</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium Compounds - chemistry</topic><topic>Materials Testing - methods</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nitrogen Compounds - chemistry</topic><topic>Protective coatings</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surgical implants</topic><topic>TiN coating</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium nitride</topic><topic>X-Ray Diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Onder, Sakip</creatorcontrib><creatorcontrib>Kok, Fatma Nese</creatorcontrib><creatorcontrib>Kazmanli, Kursat</creatorcontrib><creatorcontrib>Urgen, Mustafa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onder, Sakip</au><au>Kok, Fatma Nese</au><au>Kazmanli, Kursat</au><au>Urgen, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>33</volume><issue>7</issue><spage>4337</spage><epage>4342</epage><pages>4337-4342</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37°C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure.
•Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase•Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation•(Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23910351</pmid><doi>10.1016/j.msec.2013.06.027</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2013-10, Vol.33 (7), p.4337-4342 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692318298 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | (Ti,Mg)N coating Biocompatibility Body Fluids - chemistry Cathodic Arc PVD Technique Coated Materials, Biocompatible - chemistry Coatings Durapatite - chemistry Electrodes Humans Hydroxyapatite Magnesium Magnesium - chemistry Magnesium Compounds - chemistry Materials Testing - methods Microscopy, Electron, Scanning Nitrogen Compounds - chemistry Protective coatings Spectroscopy, Fourier Transform Infrared Surgical implants TiN coating Titanium Titanium - chemistry Titanium nitride X-Ray Diffraction |
title | Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20substituted%20hydroxyapatite%20formation%20on%20(Ti,Mg)N%20coatings%20produced%20by%20cathodic%20arc%20PVD%20technique&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Onder,%20Sakip&rft.date=2013-10-01&rft.volume=33&rft.issue=7&rft.spage=4337&rft.epage=4342&rft.pages=4337-4342&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2013.06.027&rft_dat=%3Cproquest_cross%3E1418146347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418146347&rft_id=info:pmid/23910351&rft_els_id=S092849311300386X&rfr_iscdi=true |