Electrolytes for solid oxide fuel cells

Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Energy and environment 2013-01, Vol.2 (1), p.52-72
Hauptverfasser: Figueiredo, F. M. L., Marques, F. M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 52
container_title Wiley interdisciplinary reviews. Energy and environment
container_volume 2
creator Figueiredo, F. M. L.
Marques, F. M. B.
description Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials. This article is categorized under: Fuel Cells and Hydrogen > Science and Materials Energy Research & Innovation > Science and Materials
doi_str_mv 10.1002/wene.23
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692306703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692306703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</originalsourceid><addsrcrecordid>eNp10MFKw0AQBuBFFCy1-AoBDxUkdXY32U2OUmMViiIW2tuy2UwgNW3qbkLbtzcx6kFwLjOHj5_hJ-SSwoQCsNs9bnHC-AkZMAioHwWwOv25eSzOyci5NbQTUREEYkDGSYmmtlV5rNF5eWU9V5VF5lWHIkMvb7D0DJaluyBnuS4djr73kCweksX00Z-_zJ6md3PfBCHjPsuEgTQNIhZJBKl1HvE0BE4jJoXMApPFUcwNak1NHGoJeZRyjTIWmCKTfEiu-9idrT4adLXaFK57QG-xapyiImYchATe0qs_dF01dts-p6gEycMQhGjVuFfGVs5ZzNXOFhttj4qC6ipTXWWKdXk3vdwXJR7_Y2qZPCdf2u914Wo8_Gpt35WQXIZq-TxTr3MQwf1spd74J4_OeaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707355066</pqid></control><display><type>article</type><title>Electrolytes for solid oxide fuel cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Figueiredo, F. M. L. ; Marques, F. M. B.</creator><creatorcontrib>Figueiredo, F. M. L. ; Marques, F. M. B.</creatorcontrib><description>Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials. This article is categorized under: Fuel Cells and Hydrogen &gt; Science and Materials Energy Research &amp; Innovation &gt; Science and Materials</description><identifier>ISSN: 2041-8396</identifier><identifier>ISSN: 2041-840X</identifier><identifier>EISSN: 2041-840X</identifier><identifier>DOI: 10.1002/wene.23</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Crystal defects ; Dislocations ; Electrolytes ; Grain boundaries ; Microstructure ; Point defects ; Solid electrolytes ; Solid oxide fuel cells ; Transport</subject><ispartof>Wiley interdisciplinary reviews. Energy and environment, 2013-01, Vol.2 (1), p.52-72</ispartof><rights>2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</citedby><cites>FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwene.23$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwene.23$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Figueiredo, F. M. L.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><title>Electrolytes for solid oxide fuel cells</title><title>Wiley interdisciplinary reviews. Energy and environment</title><addtitle>WENE</addtitle><description>Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials. This article is categorized under: Fuel Cells and Hydrogen &gt; Science and Materials Energy Research &amp; Innovation &gt; Science and Materials</description><subject>Crystal defects</subject><subject>Dislocations</subject><subject>Electrolytes</subject><subject>Grain boundaries</subject><subject>Microstructure</subject><subject>Point defects</subject><subject>Solid electrolytes</subject><subject>Solid oxide fuel cells</subject><subject>Transport</subject><issn>2041-8396</issn><issn>2041-840X</issn><issn>2041-840X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10MFKw0AQBuBFFCy1-AoBDxUkdXY32U2OUmMViiIW2tuy2UwgNW3qbkLbtzcx6kFwLjOHj5_hJ-SSwoQCsNs9bnHC-AkZMAioHwWwOv25eSzOyci5NbQTUREEYkDGSYmmtlV5rNF5eWU9V5VF5lWHIkMvb7D0DJaluyBnuS4djr73kCweksX00Z-_zJ6md3PfBCHjPsuEgTQNIhZJBKl1HvE0BE4jJoXMApPFUcwNak1NHGoJeZRyjTIWmCKTfEiu-9idrT4adLXaFK57QG-xapyiImYchATe0qs_dF01dts-p6gEycMQhGjVuFfGVs5ZzNXOFhttj4qC6ipTXWWKdXk3vdwXJR7_Y2qZPCdf2u914Wo8_Gpt35WQXIZq-TxTr3MQwf1spd74J4_OeaQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Figueiredo, F. M. L.</creator><creator>Marques, F. M. B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Electrolytes for solid oxide fuel cells</title><author>Figueiredo, F. M. L. ; Marques, F. M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Crystal defects</topic><topic>Dislocations</topic><topic>Electrolytes</topic><topic>Grain boundaries</topic><topic>Microstructure</topic><topic>Point defects</topic><topic>Solid electrolytes</topic><topic>Solid oxide fuel cells</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figueiredo, F. M. L.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figueiredo, F. M. L.</au><au>Marques, F. M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolytes for solid oxide fuel cells</atitle><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle><addtitle>WENE</addtitle><date>2013-01</date><risdate>2013</risdate><volume>2</volume><issue>1</issue><spage>52</spage><epage>72</epage><pages>52-72</pages><issn>2041-8396</issn><issn>2041-840X</issn><eissn>2041-840X</eissn><abstract>Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials. This article is categorized under: Fuel Cells and Hydrogen &gt; Science and Materials Energy Research &amp; Innovation &gt; Science and Materials</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wene.23</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8396
ispartof Wiley interdisciplinary reviews. Energy and environment, 2013-01, Vol.2 (1), p.52-72
issn 2041-8396
2041-840X
2041-840X
language eng
recordid cdi_proquest_miscellaneous_1692306703
source Wiley Online Library Journals Frontfile Complete
subjects Crystal defects
Dislocations
Electrolytes
Grain boundaries
Microstructure
Point defects
Solid electrolytes
Solid oxide fuel cells
Transport
title Electrolytes for solid oxide fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolytes%20for%20solid%20oxide%20fuel%20cells&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Energy%20and%20environment&rft.au=Figueiredo,%20F.%20M.%20L.&rft.date=2013-01&rft.volume=2&rft.issue=1&rft.spage=52&rft.epage=72&rft.pages=52-72&rft.issn=2041-8396&rft.eissn=2041-840X&rft_id=info:doi/10.1002/wene.23&rft_dat=%3Cproquest_cross%3E1692306703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707355066&rft_id=info:pmid/&rfr_iscdi=true