Electrolytes for solid oxide fuel cells
Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid el...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Energy and environment 2013-01, Vol.2 (1), p.52-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | Wiley interdisciplinary reviews. Energy and environment |
container_volume | 2 |
creator | Figueiredo, F. M. L. Marques, F. M. B. |
description | Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials.
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Research & Innovation > Science and Materials |
doi_str_mv | 10.1002/wene.23 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692306703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692306703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</originalsourceid><addsrcrecordid>eNp10MFKw0AQBuBFFCy1-AoBDxUkdXY32U2OUmMViiIW2tuy2UwgNW3qbkLbtzcx6kFwLjOHj5_hJ-SSwoQCsNs9bnHC-AkZMAioHwWwOv25eSzOyci5NbQTUREEYkDGSYmmtlV5rNF5eWU9V5VF5lWHIkMvb7D0DJaluyBnuS4djr73kCweksX00Z-_zJ6md3PfBCHjPsuEgTQNIhZJBKl1HvE0BE4jJoXMApPFUcwNak1NHGoJeZRyjTIWmCKTfEiu-9idrT4adLXaFK57QG-xapyiImYchATe0qs_dF01dts-p6gEycMQhGjVuFfGVs5ZzNXOFhttj4qC6ipTXWWKdXk3vdwXJR7_Y2qZPCdf2u914Wo8_Gpt35WQXIZq-TxTr3MQwf1spd74J4_OeaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707355066</pqid></control><display><type>article</type><title>Electrolytes for solid oxide fuel cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Figueiredo, F. M. L. ; Marques, F. M. B.</creator><creatorcontrib>Figueiredo, F. M. L. ; Marques, F. M. B.</creatorcontrib><description>Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials.
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Research & Innovation > Science and Materials</description><identifier>ISSN: 2041-8396</identifier><identifier>ISSN: 2041-840X</identifier><identifier>EISSN: 2041-840X</identifier><identifier>DOI: 10.1002/wene.23</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Crystal defects ; Dislocations ; Electrolytes ; Grain boundaries ; Microstructure ; Point defects ; Solid electrolytes ; Solid oxide fuel cells ; Transport</subject><ispartof>Wiley interdisciplinary reviews. Energy and environment, 2013-01, Vol.2 (1), p.52-72</ispartof><rights>2012 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</citedby><cites>FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwene.23$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwene.23$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Figueiredo, F. M. L.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><title>Electrolytes for solid oxide fuel cells</title><title>Wiley interdisciplinary reviews. Energy and environment</title><addtitle>WENE</addtitle><description>Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials.
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Research & Innovation > Science and Materials</description><subject>Crystal defects</subject><subject>Dislocations</subject><subject>Electrolytes</subject><subject>Grain boundaries</subject><subject>Microstructure</subject><subject>Point defects</subject><subject>Solid electrolytes</subject><subject>Solid oxide fuel cells</subject><subject>Transport</subject><issn>2041-8396</issn><issn>2041-840X</issn><issn>2041-840X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10MFKw0AQBuBFFCy1-AoBDxUkdXY32U2OUmMViiIW2tuy2UwgNW3qbkLbtzcx6kFwLjOHj5_hJ-SSwoQCsNs9bnHC-AkZMAioHwWwOv25eSzOyci5NbQTUREEYkDGSYmmtlV5rNF5eWU9V5VF5lWHIkMvb7D0DJaluyBnuS4djr73kCweksX00Z-_zJ6md3PfBCHjPsuEgTQNIhZJBKl1HvE0BE4jJoXMApPFUcwNak1NHGoJeZRyjTIWmCKTfEiu-9idrT4adLXaFK57QG-xapyiImYchATe0qs_dF01dts-p6gEycMQhGjVuFfGVs5ZzNXOFhttj4qC6ipTXWWKdXk3vdwXJR7_Y2qZPCdf2u914Wo8_Gpt35WQXIZq-TxTr3MQwf1spd74J4_OeaQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Figueiredo, F. M. L.</creator><creator>Marques, F. M. B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Electrolytes for solid oxide fuel cells</title><author>Figueiredo, F. M. L. ; Marques, F. M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4523-2d6c0bb48287e07aaf83b503182767d4cd9893ceaa1c95a70f8b3ae796ebe273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Crystal defects</topic><topic>Dislocations</topic><topic>Electrolytes</topic><topic>Grain boundaries</topic><topic>Microstructure</topic><topic>Point defects</topic><topic>Solid electrolytes</topic><topic>Solid oxide fuel cells</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figueiredo, F. M. L.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figueiredo, F. M. L.</au><au>Marques, F. M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolytes for solid oxide fuel cells</atitle><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle><addtitle>WENE</addtitle><date>2013-01</date><risdate>2013</risdate><volume>2</volume><issue>1</issue><spage>52</spage><epage>72</epage><pages>52-72</pages><issn>2041-8396</issn><issn>2041-840X</issn><eissn>2041-840X</eissn><abstract>Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials.
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Research & Innovation > Science and Materials</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wene.23</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8396 |
ispartof | Wiley interdisciplinary reviews. Energy and environment, 2013-01, Vol.2 (1), p.52-72 |
issn | 2041-8396 2041-840X 2041-840X |
language | eng |
recordid | cdi_proquest_miscellaneous_1692306703 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Crystal defects Dislocations Electrolytes Grain boundaries Microstructure Point defects Solid electrolytes Solid oxide fuel cells Transport |
title | Electrolytes for solid oxide fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolytes%20for%20solid%20oxide%20fuel%20cells&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Energy%20and%20environment&rft.au=Figueiredo,%20F.%20M.%20L.&rft.date=2013-01&rft.volume=2&rft.issue=1&rft.spage=52&rft.epage=72&rft.pages=52-72&rft.issn=2041-8396&rft.eissn=2041-840X&rft_id=info:doi/10.1002/wene.23&rft_dat=%3Cproquest_cross%3E1692306703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707355066&rft_id=info:pmid/&rfr_iscdi=true |