The role of benzene photolysis in Titan haze formation

•The effect of benzene in Titan’s atmosphere simulated by UV irradiation (115–400nm).•HCN and CH3CN are identified as two major gas products.•With benzene addition, aromaticity and total amount of gas products increases.•Addition of benzene decreases nitrogen content in condensed phase (tholins). Du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2014-05, Vol.233, p.233-241
Hauptverfasser: Yoon, Y. Heidi, Hörst, Sarah M., Hicks, Raea K., Li, Rui, de Gouw, Joost A., Tolbert, Margaret A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue
container_start_page 233
container_title Icarus (New York, N.Y. 1962)
container_volume 233
creator Yoon, Y. Heidi
Hörst, Sarah M.
Hicks, Raea K.
Li, Rui
de Gouw, Joost A.
Tolbert, Margaret A.
description •The effect of benzene in Titan’s atmosphere simulated by UV irradiation (115–400nm).•HCN and CH3CN are identified as two major gas products.•With benzene addition, aromaticity and total amount of gas products increases.•Addition of benzene decreases nitrogen content in condensed phase (tholins). During the Cassini mission to the saturnian system, benzene (C6H6) was observed throughout Titan’s atmosphere. Although present in trace amounts, benzene has been proposed to be an important precursor for polycyclic aromatic hydrocarbon formation, which could eventually lead to haze production. In this work, we simulate the effect of benzene in Titan’s atmosphere in the laboratory by using a deuterium lamp (115–400nm) to irradiate CH4/N2 gas mixtures containing ppm-levels of C6H6. Proton-transfer ion-trap mass spectrometry is used to detect gas-phase products in situ. HCN and CH3CN are identified as two major gases formed from the photolysis of 2% CH4 in N2, both with and without 1ppmv C6H6 added. Inclusion of benzene significantly increases the total amount of gas-phase products formed and the aromaticity of the resultant gases, as shown by delta analysis of the mass spectra. The condensed phase products (or tholins) are measured in situ using high-resolution time-of-flight aerosol mass spectrometry. As reported previously by Trainer et al. (Trainer, M.G., Sebree, J.A., Yoon, Y.H., Tolbert, M.A. [2013]. Astrophys. J. 766, L4), the addition of C6H6 is shown to increase aerosol mass, but decrease the nitrogen incorporation in the organic aerosol. The pressure dependence of aerosol formation for the C6H6/CH4/N2 gas mixture is also explored. As the pressure decreases, the %N by mass in the aerosol products decreases.
doi_str_mv 10.1016/j.icarus.2014.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692302777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103514000839</els_id><sourcerecordid>1664194591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-cedf5582b3b2d59445c0757d915ce28072b8c6fa4ad4e350acb2dbb7c7d36a653</originalsourceid><addsrcrecordid>eNqNkM1Kw0AYRQdRsFbfwMUs3SR-859sBCn-QcFNXQ-TyRc6Jc3UmVSoT29KXYuruzn3wj2E3DIoGTB9vymDd2mfSw5MlsBLAH1GZgxqKLiW4pzMAFhdMBDqklzlvAEAVdViRvRqjTTFHmnsaIPDNw5Id-s4xv6QQ6ZhoKswuoGu3TfSLqatG0McrslF5_qMN785Jx_PT6vFa7F8f3lbPC4LJzUbC49tp1TFG9HwVtVSKg9GmbZmyiOvwPCm8rpz0rUShQLnJ65pjDet0E4rMSd3p91dip97zKPdhuyx792AcZ8t0zUXwI0x_0C1ZLVUNZtQeUJ9ijkn7Owuha1LB8vAHo3ajT0ZtUejFridjE61h1MNp8dfAZPNPuAwnQwJ_WjbGP4e-AEo0YAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664194591</pqid></control><display><type>article</type><title>The role of benzene photolysis in Titan haze formation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yoon, Y. Heidi ; Hörst, Sarah M. ; Hicks, Raea K. ; Li, Rui ; de Gouw, Joost A. ; Tolbert, Margaret A.</creator><creatorcontrib>Yoon, Y. Heidi ; Hörst, Sarah M. ; Hicks, Raea K. ; Li, Rui ; de Gouw, Joost A. ; Tolbert, Margaret A.</creatorcontrib><description>•The effect of benzene in Titan’s atmosphere simulated by UV irradiation (115–400nm).•HCN and CH3CN are identified as two major gas products.•With benzene addition, aromaticity and total amount of gas products increases.•Addition of benzene decreases nitrogen content in condensed phase (tholins). During the Cassini mission to the saturnian system, benzene (C6H6) was observed throughout Titan’s atmosphere. Although present in trace amounts, benzene has been proposed to be an important precursor for polycyclic aromatic hydrocarbon formation, which could eventually lead to haze production. In this work, we simulate the effect of benzene in Titan’s atmosphere in the laboratory by using a deuterium lamp (115–400nm) to irradiate CH4/N2 gas mixtures containing ppm-levels of C6H6. Proton-transfer ion-trap mass spectrometry is used to detect gas-phase products in situ. HCN and CH3CN are identified as two major gases formed from the photolysis of 2% CH4 in N2, both with and without 1ppmv C6H6 added. Inclusion of benzene significantly increases the total amount of gas-phase products formed and the aromaticity of the resultant gases, as shown by delta analysis of the mass spectra. The condensed phase products (or tholins) are measured in situ using high-resolution time-of-flight aerosol mass spectrometry. As reported previously by Trainer et al. (Trainer, M.G., Sebree, J.A., Yoon, Y.H., Tolbert, M.A. [2013]. Astrophys. J. 766, L4), the addition of C6H6 is shown to increase aerosol mass, but decrease the nitrogen incorporation in the organic aerosol. The pressure dependence of aerosol formation for the C6H6/CH4/N2 gas mixture is also explored. As the pressure decreases, the %N by mass in the aerosol products decreases.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2014.02.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Aerosols ; Atmospheres ; Atmospheres, chemistry ; Benzene ; Experimental techniques ; Formations ; Gas mixtures ; Mass spectrometry ; Photochemistry ; Saturn satellites ; Titan ; Titan, atmosphere</subject><ispartof>Icarus (New York, N.Y. 1962), 2014-05, Vol.233, p.233-241</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-cedf5582b3b2d59445c0757d915ce28072b8c6fa4ad4e350acb2dbb7c7d36a653</citedby><cites>FETCH-LOGICAL-a461t-cedf5582b3b2d59445c0757d915ce28072b8c6fa4ad4e350acb2dbb7c7d36a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icarus.2014.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yoon, Y. Heidi</creatorcontrib><creatorcontrib>Hörst, Sarah M.</creatorcontrib><creatorcontrib>Hicks, Raea K.</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>de Gouw, Joost A.</creatorcontrib><creatorcontrib>Tolbert, Margaret A.</creatorcontrib><title>The role of benzene photolysis in Titan haze formation</title><title>Icarus (New York, N.Y. 1962)</title><description>•The effect of benzene in Titan’s atmosphere simulated by UV irradiation (115–400nm).•HCN and CH3CN are identified as two major gas products.•With benzene addition, aromaticity and total amount of gas products increases.•Addition of benzene decreases nitrogen content in condensed phase (tholins). During the Cassini mission to the saturnian system, benzene (C6H6) was observed throughout Titan’s atmosphere. Although present in trace amounts, benzene has been proposed to be an important precursor for polycyclic aromatic hydrocarbon formation, which could eventually lead to haze production. In this work, we simulate the effect of benzene in Titan’s atmosphere in the laboratory by using a deuterium lamp (115–400nm) to irradiate CH4/N2 gas mixtures containing ppm-levels of C6H6. Proton-transfer ion-trap mass spectrometry is used to detect gas-phase products in situ. HCN and CH3CN are identified as two major gases formed from the photolysis of 2% CH4 in N2, both with and without 1ppmv C6H6 added. Inclusion of benzene significantly increases the total amount of gas-phase products formed and the aromaticity of the resultant gases, as shown by delta analysis of the mass spectra. The condensed phase products (or tholins) are measured in situ using high-resolution time-of-flight aerosol mass spectrometry. As reported previously by Trainer et al. (Trainer, M.G., Sebree, J.A., Yoon, Y.H., Tolbert, M.A. [2013]. Astrophys. J. 766, L4), the addition of C6H6 is shown to increase aerosol mass, but decrease the nitrogen incorporation in the organic aerosol. The pressure dependence of aerosol formation for the C6H6/CH4/N2 gas mixture is also explored. As the pressure decreases, the %N by mass in the aerosol products decreases.</description><subject>Aerosols</subject><subject>Atmospheres</subject><subject>Atmospheres, chemistry</subject><subject>Benzene</subject><subject>Experimental techniques</subject><subject>Formations</subject><subject>Gas mixtures</subject><subject>Mass spectrometry</subject><subject>Photochemistry</subject><subject>Saturn satellites</subject><subject>Titan</subject><subject>Titan, atmosphere</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM1Kw0AYRQdRsFbfwMUs3SR-859sBCn-QcFNXQ-TyRc6Jc3UmVSoT29KXYuruzn3wj2E3DIoGTB9vymDd2mfSw5MlsBLAH1GZgxqKLiW4pzMAFhdMBDqklzlvAEAVdViRvRqjTTFHmnsaIPDNw5Id-s4xv6QQ6ZhoKswuoGu3TfSLqatG0McrslF5_qMN785Jx_PT6vFa7F8f3lbPC4LJzUbC49tp1TFG9HwVtVSKg9GmbZmyiOvwPCm8rpz0rUShQLnJ65pjDet0E4rMSd3p91dip97zKPdhuyx792AcZ8t0zUXwI0x_0C1ZLVUNZtQeUJ9ijkn7Owuha1LB8vAHo3ajT0ZtUejFridjE61h1MNp8dfAZPNPuAwnQwJ_WjbGP4e-AEo0YAc</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Yoon, Y. Heidi</creator><creator>Hörst, Sarah M.</creator><creator>Hicks, Raea K.</creator><creator>Li, Rui</creator><creator>de Gouw, Joost A.</creator><creator>Tolbert, Margaret A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>The role of benzene photolysis in Titan haze formation</title><author>Yoon, Y. Heidi ; Hörst, Sarah M. ; Hicks, Raea K. ; Li, Rui ; de Gouw, Joost A. ; Tolbert, Margaret A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-cedf5582b3b2d59445c0757d915ce28072b8c6fa4ad4e350acb2dbb7c7d36a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerosols</topic><topic>Atmospheres</topic><topic>Atmospheres, chemistry</topic><topic>Benzene</topic><topic>Experimental techniques</topic><topic>Formations</topic><topic>Gas mixtures</topic><topic>Mass spectrometry</topic><topic>Photochemistry</topic><topic>Saturn satellites</topic><topic>Titan</topic><topic>Titan, atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Y. Heidi</creatorcontrib><creatorcontrib>Hörst, Sarah M.</creatorcontrib><creatorcontrib>Hicks, Raea K.</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>de Gouw, Joost A.</creatorcontrib><creatorcontrib>Tolbert, Margaret A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Y. Heidi</au><au>Hörst, Sarah M.</au><au>Hicks, Raea K.</au><au>Li, Rui</au><au>de Gouw, Joost A.</au><au>Tolbert, Margaret A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of benzene photolysis in Titan haze formation</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>233</volume><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>•The effect of benzene in Titan’s atmosphere simulated by UV irradiation (115–400nm).•HCN and CH3CN are identified as two major gas products.•With benzene addition, aromaticity and total amount of gas products increases.•Addition of benzene decreases nitrogen content in condensed phase (tholins). During the Cassini mission to the saturnian system, benzene (C6H6) was observed throughout Titan’s atmosphere. Although present in trace amounts, benzene has been proposed to be an important precursor for polycyclic aromatic hydrocarbon formation, which could eventually lead to haze production. In this work, we simulate the effect of benzene in Titan’s atmosphere in the laboratory by using a deuterium lamp (115–400nm) to irradiate CH4/N2 gas mixtures containing ppm-levels of C6H6. Proton-transfer ion-trap mass spectrometry is used to detect gas-phase products in situ. HCN and CH3CN are identified as two major gases formed from the photolysis of 2% CH4 in N2, both with and without 1ppmv C6H6 added. Inclusion of benzene significantly increases the total amount of gas-phase products formed and the aromaticity of the resultant gases, as shown by delta analysis of the mass spectra. The condensed phase products (or tholins) are measured in situ using high-resolution time-of-flight aerosol mass spectrometry. As reported previously by Trainer et al. (Trainer, M.G., Sebree, J.A., Yoon, Y.H., Tolbert, M.A. [2013]. Astrophys. J. 766, L4), the addition of C6H6 is shown to increase aerosol mass, but decrease the nitrogen incorporation in the organic aerosol. The pressure dependence of aerosol formation for the C6H6/CH4/N2 gas mixture is also explored. As the pressure decreases, the %N by mass in the aerosol products decreases.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2014.02.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2014-05, Vol.233, p.233-241
issn 0019-1035
1090-2643
language eng
recordid cdi_proquest_miscellaneous_1692302777
source Access via ScienceDirect (Elsevier)
subjects Aerosols
Atmospheres
Atmospheres, chemistry
Benzene
Experimental techniques
Formations
Gas mixtures
Mass spectrometry
Photochemistry
Saturn satellites
Titan
Titan, atmosphere
title The role of benzene photolysis in Titan haze formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20benzene%20photolysis%20in%20Titan%20haze%20formation&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Yoon,%20Y.%20Heidi&rft.date=2014-05-01&rft.volume=233&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/j.icarus.2014.02.006&rft_dat=%3Cproquest_cross%3E1664194591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664194591&rft_id=info:pmid/&rft_els_id=S0019103514000839&rfr_iscdi=true