Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst
This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface m...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2012-04, Vol.51 (13), p.4843-4853 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4853 |
---|---|
container_issue | 13 |
container_start_page | 4843 |
container_title | Industrial & engineering chemistry research |
container_volume | 51 |
creator | Mohanty, Pravakar Majhi, Sachchit Sahu, J.N Pant, K. K |
description | This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively. |
doi_str_mv | 10.1021/ie202866q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692300702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692300702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</originalsourceid><addsrcrecordid>eNqFkcFqGzEQhkVpoG7SQ99Al0JD2VTSaiT5mCxJHXAwNM2ll2VWK7kK65Ut7R7cU16gp75hnqQ2DuklkMsMzP_Nd5gh5CNnZ5wJ_jU4wYRRavOGTDgIVgCT8JZMmDGmAGPgHXmf8z1jDEDKCfnz3eV17LOjt2PyaB29ia3rQr-k2Ld0sR7CKvzGIcSeRk-rBZ1t2xSXrj_MfEx0Fpa_XKLzsBlDe8gtpmaX3uW9qBofH_5WcV8S_UJ_3t4UQC-CH3u7d2BHKxyw2-bhhBx57LL78NSPyd3V5Y9qVswX366r83mBJcBQaBSm0VxbrVk5nULjGrRCgrSqLT3DxjOuJJPCGFuiLHnjXKMaAMNdiQDlMfl88K5T3IwuD_UqZOu6DnsXx1xzNRUlY5qJ11FQQimQhu_Q0wNqU8w5OV-vU1hh2tac1fvv1M_f2bGfnrSYLXY-YW9Dfl4QoLWeCv6fQ5vr-zim3bnyC75_fZScjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562665481</pqid></control><display><type>article</type><title>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</title><source>ACS Publications</source><creator>Mohanty, Pravakar ; Majhi, Sachchit ; Sahu, J.N ; Pant, K. K</creator><creatorcontrib>Mohanty, Pravakar ; Majhi, Sachchit ; Sahu, J.N ; Pant, K. K</creatorcontrib><description>This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie202866q</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Carbon monoxide ; CATALYSTS ; Chemical engineering ; COMPOSITES ; Conversion ; COPPER OXIDE ; Design engineering ; Exact sciences and technology ; Hydrocarbons ; HYDROGEN ; HYDROGENATION ; Liquids ; Optimization ; Reactors ; Run time (computers) ; THERMOGRAVIMETRIC ANALYSIS</subject><ispartof>Industrial & engineering chemistry research, 2012-04, Vol.51 (13), p.4843-4853</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</citedby><cites>FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie202866q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie202866q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25777921$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, Pravakar</creatorcontrib><creatorcontrib>Majhi, Sachchit</creatorcontrib><creatorcontrib>Sahu, J.N</creatorcontrib><creatorcontrib>Pant, K. K</creatorcontrib><title>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.</description><subject>Applied sciences</subject><subject>Carbon monoxide</subject><subject>CATALYSTS</subject><subject>Chemical engineering</subject><subject>COMPOSITES</subject><subject>Conversion</subject><subject>COPPER OXIDE</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>HYDROGEN</subject><subject>HYDROGENATION</subject><subject>Liquids</subject><subject>Optimization</subject><subject>Reactors</subject><subject>Run time (computers)</subject><subject>THERMOGRAVIMETRIC ANALYSIS</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcFqGzEQhkVpoG7SQ99Al0JD2VTSaiT5mCxJHXAwNM2ll2VWK7kK65Ut7R7cU16gp75hnqQ2DuklkMsMzP_Nd5gh5CNnZ5wJ_jU4wYRRavOGTDgIVgCT8JZMmDGmAGPgHXmf8z1jDEDKCfnz3eV17LOjt2PyaB29ia3rQr-k2Ld0sR7CKvzGIcSeRk-rBZ1t2xSXrj_MfEx0Fpa_XKLzsBlDe8gtpmaX3uW9qBofH_5WcV8S_UJ_3t4UQC-CH3u7d2BHKxyw2-bhhBx57LL78NSPyd3V5Y9qVswX366r83mBJcBQaBSm0VxbrVk5nULjGrRCgrSqLT3DxjOuJJPCGFuiLHnjXKMaAMNdiQDlMfl88K5T3IwuD_UqZOu6DnsXx1xzNRUlY5qJ11FQQimQhu_Q0wNqU8w5OV-vU1hh2tac1fvv1M_f2bGfnrSYLXY-YW9Dfl4QoLWeCv6fQ5vr-zim3bnyC75_fZScjw</recordid><startdate>20120404</startdate><enddate>20120404</enddate><creator>Mohanty, Pravakar</creator><creator>Majhi, Sachchit</creator><creator>Sahu, J.N</creator><creator>Pant, K. K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20120404</creationdate><title>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</title><author>Mohanty, Pravakar ; Majhi, Sachchit ; Sahu, J.N ; Pant, K. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Carbon monoxide</topic><topic>CATALYSTS</topic><topic>Chemical engineering</topic><topic>COMPOSITES</topic><topic>Conversion</topic><topic>COPPER OXIDE</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>HYDROGEN</topic><topic>HYDROGENATION</topic><topic>Liquids</topic><topic>Optimization</topic><topic>Reactors</topic><topic>Run time (computers)</topic><topic>THERMOGRAVIMETRIC ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Pravakar</creatorcontrib><creatorcontrib>Majhi, Sachchit</creatorcontrib><creatorcontrib>Sahu, J.N</creatorcontrib><creatorcontrib>Pant, K. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Pravakar</au><au>Majhi, Sachchit</au><au>Sahu, J.N</au><au>Pant, K. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2012-04-04</date><risdate>2012</risdate><volume>51</volume><issue>13</issue><spage>4843</spage><epage>4853</epage><pages>4843-4853</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie202866q</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2012-04, Vol.51 (13), p.4843-4853 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692300702 |
source | ACS Publications |
subjects | Applied sciences Carbon monoxide CATALYSTS Chemical engineering COMPOSITES Conversion COPPER OXIDE Design engineering Exact sciences and technology Hydrocarbons HYDROGEN HYDROGENATION Liquids Optimization Reactors Run time (computers) THERMOGRAVIMETRIC ANALYSIS |
title | Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20Surface%20Modeling%20and%20Optimization%20of%20CO%20Hydrogenation%20for%20Higher%20Liquid%20Hydrocarbon%20Using%20Cu%E2%80%93Co%E2%80%93Cr%20+%20ZSM-5%20Bifunctional%20Catalyst&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Mohanty,%20Pravakar&rft.date=2012-04-04&rft.volume=51&rft.issue=13&rft.spage=4843&rft.epage=4853&rft.pages=4843-4853&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie202866q&rft_dat=%3Cproquest_cross%3E1692300702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562665481&rft_id=info:pmid/&rfr_iscdi=true |