Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst

This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2012-04, Vol.51 (13), p.4843-4853
Hauptverfasser: Mohanty, Pravakar, Majhi, Sachchit, Sahu, J.N, Pant, K. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4853
container_issue 13
container_start_page 4843
container_title Industrial & engineering chemistry research
container_volume 51
creator Mohanty, Pravakar
Majhi, Sachchit
Sahu, J.N
Pant, K. K
description This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.
doi_str_mv 10.1021/ie202866q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692300702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692300702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</originalsourceid><addsrcrecordid>eNqFkcFqGzEQhkVpoG7SQ99Al0JD2VTSaiT5mCxJHXAwNM2ll2VWK7kK65Ut7R7cU16gp75hnqQ2DuklkMsMzP_Nd5gh5CNnZ5wJ_jU4wYRRavOGTDgIVgCT8JZMmDGmAGPgHXmf8z1jDEDKCfnz3eV17LOjt2PyaB29ia3rQr-k2Ld0sR7CKvzGIcSeRk-rBZ1t2xSXrj_MfEx0Fpa_XKLzsBlDe8gtpmaX3uW9qBofH_5WcV8S_UJ_3t4UQC-CH3u7d2BHKxyw2-bhhBx57LL78NSPyd3V5Y9qVswX366r83mBJcBQaBSm0VxbrVk5nULjGrRCgrSqLT3DxjOuJJPCGFuiLHnjXKMaAMNdiQDlMfl88K5T3IwuD_UqZOu6DnsXx1xzNRUlY5qJ11FQQimQhu_Q0wNqU8w5OV-vU1hh2tac1fvv1M_f2bGfnrSYLXY-YW9Dfl4QoLWeCv6fQ5vr-zim3bnyC75_fZScjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562665481</pqid></control><display><type>article</type><title>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</title><source>ACS Publications</source><creator>Mohanty, Pravakar ; Majhi, Sachchit ; Sahu, J.N ; Pant, K. K</creator><creatorcontrib>Mohanty, Pravakar ; Majhi, Sachchit ; Sahu, J.N ; Pant, K. K</creatorcontrib><description>This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie202866q</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Carbon monoxide ; CATALYSTS ; Chemical engineering ; COMPOSITES ; Conversion ; COPPER OXIDE ; Design engineering ; Exact sciences and technology ; Hydrocarbons ; HYDROGEN ; HYDROGENATION ; Liquids ; Optimization ; Reactors ; Run time (computers) ; THERMOGRAVIMETRIC ANALYSIS</subject><ispartof>Industrial &amp; engineering chemistry research, 2012-04, Vol.51 (13), p.4843-4853</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</citedby><cites>FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie202866q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie202866q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25777921$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, Pravakar</creatorcontrib><creatorcontrib>Majhi, Sachchit</creatorcontrib><creatorcontrib>Sahu, J.N</creatorcontrib><creatorcontrib>Pant, K. K</creatorcontrib><title>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.</description><subject>Applied sciences</subject><subject>Carbon monoxide</subject><subject>CATALYSTS</subject><subject>Chemical engineering</subject><subject>COMPOSITES</subject><subject>Conversion</subject><subject>COPPER OXIDE</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>HYDROGEN</subject><subject>HYDROGENATION</subject><subject>Liquids</subject><subject>Optimization</subject><subject>Reactors</subject><subject>Run time (computers)</subject><subject>THERMOGRAVIMETRIC ANALYSIS</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcFqGzEQhkVpoG7SQ99Al0JD2VTSaiT5mCxJHXAwNM2ll2VWK7kK65Ut7R7cU16gp75hnqQ2DuklkMsMzP_Nd5gh5CNnZ5wJ_jU4wYRRavOGTDgIVgCT8JZMmDGmAGPgHXmf8z1jDEDKCfnz3eV17LOjt2PyaB29ia3rQr-k2Ld0sR7CKvzGIcSeRk-rBZ1t2xSXrj_MfEx0Fpa_XKLzsBlDe8gtpmaX3uW9qBofH_5WcV8S_UJ_3t4UQC-CH3u7d2BHKxyw2-bhhBx57LL78NSPyd3V5Y9qVswX366r83mBJcBQaBSm0VxbrVk5nULjGrRCgrSqLT3DxjOuJJPCGFuiLHnjXKMaAMNdiQDlMfl88K5T3IwuD_UqZOu6DnsXx1xzNRUlY5qJ11FQQimQhu_Q0wNqU8w5OV-vU1hh2tac1fvv1M_f2bGfnrSYLXY-YW9Dfl4QoLWeCv6fQ5vr-zim3bnyC75_fZScjw</recordid><startdate>20120404</startdate><enddate>20120404</enddate><creator>Mohanty, Pravakar</creator><creator>Majhi, Sachchit</creator><creator>Sahu, J.N</creator><creator>Pant, K. K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20120404</creationdate><title>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</title><author>Mohanty, Pravakar ; Majhi, Sachchit ; Sahu, J.N ; Pant, K. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-7a28b717c7703995bebac2454c6d3f0abf016404288c3a431beeb6b5581e3a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Carbon monoxide</topic><topic>CATALYSTS</topic><topic>Chemical engineering</topic><topic>COMPOSITES</topic><topic>Conversion</topic><topic>COPPER OXIDE</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>HYDROGEN</topic><topic>HYDROGENATION</topic><topic>Liquids</topic><topic>Optimization</topic><topic>Reactors</topic><topic>Run time (computers)</topic><topic>THERMOGRAVIMETRIC ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Pravakar</creatorcontrib><creatorcontrib>Majhi, Sachchit</creatorcontrib><creatorcontrib>Sahu, J.N</creatorcontrib><creatorcontrib>Pant, K. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Pravakar</au><au>Majhi, Sachchit</au><au>Sahu, J.N</au><au>Pant, K. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2012-04-04</date><risdate>2012</risdate><volume>51</volume><issue>13</issue><spage>4843</spage><epage>4853</epage><pages>4843-4853</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie202866q</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2012-04, Vol.51 (13), p.4843-4853
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1692300702
source ACS Publications
subjects Applied sciences
Carbon monoxide
CATALYSTS
Chemical engineering
COMPOSITES
Conversion
COPPER OXIDE
Design engineering
Exact sciences and technology
Hydrocarbons
HYDROGEN
HYDROGENATION
Liquids
Optimization
Reactors
Run time (computers)
THERMOGRAVIMETRIC ANALYSIS
title Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20Surface%20Modeling%20and%20Optimization%20of%20CO%20Hydrogenation%20for%20Higher%20Liquid%20Hydrocarbon%20Using%20Cu%E2%80%93Co%E2%80%93Cr%20+%20ZSM-5%20Bifunctional%20Catalyst&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Mohanty,%20Pravakar&rft.date=2012-04-04&rft.volume=51&rft.issue=13&rft.spage=4843&rft.epage=4853&rft.pages=4843-4853&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie202866q&rft_dat=%3Cproquest_cross%3E1692300702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562665481&rft_id=info:pmid/&rfr_iscdi=true