Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies

Chengcai Chu and colleagues show that genetic variation in NRT1.1B / OsNPF6.5 contributes to nitrate-use divergence between two main subspecies of Asian cultivated rice. Their findings may help to improve nitrogen-use efficiency in plant production. Asian cultivated rice ( Oryza sativa L.) consists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2015-07, Vol.47 (7), p.834-838
Hauptverfasser: Hu, Bin, Wang, Wei, Ou, Shujun, Tang, Jiuyou, Li, Hua, Che, Ronghui, Zhang, Zhihua, Chai, Xuyang, Wang, Hongru, Wang, Yiqin, Liang, Chengzhen, Liu, Linchuan, Piao, Zhongze, Deng, Qiyun, Deng, Kun, Xu, Chi, Liang, Yan, Zhang, Lianhe, Li, Legong, Chu, Chengcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 7
container_start_page 834
container_title Nature genetics
container_volume 47
creator Hu, Bin
Wang, Wei
Ou, Shujun
Tang, Jiuyou
Li, Hua
Che, Ronghui
Zhang, Zhihua
Chai, Xuyang
Wang, Hongru
Wang, Yiqin
Liang, Chengzhen
Liu, Linchuan
Piao, Zhongze
Deng, Qiyun
Deng, Kun
Xu, Chi
Liang, Yan
Zhang, Lianhe
Li, Legong
Chu, Chengcai
description Chengcai Chu and colleagues show that genetic variation in NRT1.1B / OsNPF6.5 contributes to nitrate-use divergence between two main subspecies of Asian cultivated rice. Their findings may help to improve nitrogen-use efficiency in plant production. Asian cultivated rice ( Oryza sativa L.) consists of two main subspecies, indica and japonica . Indica has higher nitrate-absorption activity than japonica , but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B ( OsNPF6.5 ), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica . NRT1.1B - indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B - indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B - indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B - indica can potentially improve the NUE of japonica .
doi_str_mv 10.1038/ng.3337
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691601921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421323414</galeid><sourcerecordid>A421323414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-eba79724b6c1ac35807eb9a4d5b626bf38499529292f9ac11e83eca4b1a6f3333</originalsourceid><addsrcrecordid>eNqNkktr3DAUhUVpyZv-g2LoounCE11Llq1lEtomEBqYPLZC0lwbhRl5Ksl9_PvKJGkyIYtyF3p996BzuIS8BzoDytoj388YY80bsgM1FyU00L7Neyqg5JSJbbIb4x2lwDltt8h2JWjNuGx2yPxWB6eTG3zhfPF9fg0zOCns4FNwZkwYizQU3qWgE5ZjxGLhfmLo0VssDKZfiL4ILh_iaOIarcO4T951ehnx4GHdIzdfv1yfnpUXl9_OT48vSiuApRKNbmRTcSMsaMvqljZopOaL2ohKmI61XMq6krk6qS0Atgyt5ga06LJZtkcO73XXYfgxYkxq5aLF5VJ7HMaoQEgQFGQFGf34Ar0bxuDz7yaKC5njkE9Ur5eonO-GbNtOouqYZ5WKceCZmr1C5VrgyuXgsHP5fqPh80bDFC7-Tr0eY1TnV_P_Zy9vN9lP96wNQ4wBO7UObqXDHwVUTVOhfK-mqcjkhwf7o1nh4h_3OAZPUcb85HsMz_J5ofUXnbW6Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694690539</pqid></control><display><type>article</type><title>Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Hu, Bin ; Wang, Wei ; Ou, Shujun ; Tang, Jiuyou ; Li, Hua ; Che, Ronghui ; Zhang, Zhihua ; Chai, Xuyang ; Wang, Hongru ; Wang, Yiqin ; Liang, Chengzhen ; Liu, Linchuan ; Piao, Zhongze ; Deng, Qiyun ; Deng, Kun ; Xu, Chi ; Liang, Yan ; Zhang, Lianhe ; Li, Legong ; Chu, Chengcai</creator><creatorcontrib>Hu, Bin ; Wang, Wei ; Ou, Shujun ; Tang, Jiuyou ; Li, Hua ; Che, Ronghui ; Zhang, Zhihua ; Chai, Xuyang ; Wang, Hongru ; Wang, Yiqin ; Liang, Chengzhen ; Liu, Linchuan ; Piao, Zhongze ; Deng, Qiyun ; Deng, Kun ; Xu, Chi ; Liang, Yan ; Zhang, Lianhe ; Li, Legong ; Chu, Chengcai</creatorcontrib><description>Chengcai Chu and colleagues show that genetic variation in NRT1.1B / OsNPF6.5 contributes to nitrate-use divergence between two main subspecies of Asian cultivated rice. Their findings may help to improve nitrogen-use efficiency in plant production. Asian cultivated rice ( Oryza sativa L.) consists of two main subspecies, indica and japonica . Indica has higher nitrate-absorption activity than japonica , but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B ( OsNPF6.5 ), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica . NRT1.1B - indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B - indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B - indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B - indica can potentially improve the NUE of japonica .</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3337</identifier><identifier>PMID: 26053497</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 45/23 ; 631/449/2491 ; Agriculture ; Alleles ; Animal Genetics and Genomics ; Animals ; Anion Transport Proteins - genetics ; Anion Transport Proteins - metabolism ; Base Sequence ; Biological transport ; Biomedicine ; Cancer Research ; Cells, Cultured ; Cultivation ; Domestication ; Experiments ; Field tests ; Fixation ; Gene expression ; Gene Function ; Genetic aspects ; Genetic Speciation ; Genetic Variation ; Grain cultivation ; Human Genetics ; Identification and classification ; Labeling ; letter ; Nitrates ; Nitrates - metabolism ; Nitrogen ; Oryza - genetics ; Oryza - metabolism ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Polymorphism, Single Nucleotide ; Proteins ; Rice ; Species Specificity ; Transgenic plants ; Xenopus laevis</subject><ispartof>Nature genetics, 2015-07, Vol.47 (7), p.834-838</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-eba79724b6c1ac35807eb9a4d5b626bf38499529292f9ac11e83eca4b1a6f3333</citedby><cites>FETCH-LOGICAL-c613t-eba79724b6c1ac35807eb9a4d5b626bf38499529292f9ac11e83eca4b1a6f3333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.3337$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.3337$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26053497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ou, Shujun</creatorcontrib><creatorcontrib>Tang, Jiuyou</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Che, Ronghui</creatorcontrib><creatorcontrib>Zhang, Zhihua</creatorcontrib><creatorcontrib>Chai, Xuyang</creatorcontrib><creatorcontrib>Wang, Hongru</creatorcontrib><creatorcontrib>Wang, Yiqin</creatorcontrib><creatorcontrib>Liang, Chengzhen</creatorcontrib><creatorcontrib>Liu, Linchuan</creatorcontrib><creatorcontrib>Piao, Zhongze</creatorcontrib><creatorcontrib>Deng, Qiyun</creatorcontrib><creatorcontrib>Deng, Kun</creatorcontrib><creatorcontrib>Xu, Chi</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Zhang, Lianhe</creatorcontrib><creatorcontrib>Li, Legong</creatorcontrib><creatorcontrib>Chu, Chengcai</creatorcontrib><title>Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Chengcai Chu and colleagues show that genetic variation in NRT1.1B / OsNPF6.5 contributes to nitrate-use divergence between two main subspecies of Asian cultivated rice. Their findings may help to improve nitrogen-use efficiency in plant production. Asian cultivated rice ( Oryza sativa L.) consists of two main subspecies, indica and japonica . Indica has higher nitrate-absorption activity than japonica , but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B ( OsNPF6.5 ), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica . NRT1.1B - indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B - indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B - indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B - indica can potentially improve the NUE of japonica .</description><subject>45</subject><subject>45/23</subject><subject>631/449/2491</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Anion Transport Proteins - genetics</subject><subject>Anion Transport Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Biological transport</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cells, Cultured</subject><subject>Cultivation</subject><subject>Domestication</subject><subject>Experiments</subject><subject>Field tests</subject><subject>Fixation</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Genetic aspects</subject><subject>Genetic Speciation</subject><subject>Genetic Variation</subject><subject>Grain cultivation</subject><subject>Human Genetics</subject><subject>Identification and classification</subject><subject>Labeling</subject><subject>letter</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Proteins</subject><subject>Rice</subject><subject>Species Specificity</subject><subject>Transgenic plants</subject><subject>Xenopus laevis</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktr3DAUhUVpyZv-g2LoounCE11Llq1lEtomEBqYPLZC0lwbhRl5Ksl9_PvKJGkyIYtyF3p996BzuIS8BzoDytoj388YY80bsgM1FyU00L7Neyqg5JSJbbIb4x2lwDltt8h2JWjNuGx2yPxWB6eTG3zhfPF9fg0zOCns4FNwZkwYizQU3qWgE5ZjxGLhfmLo0VssDKZfiL4ILh_iaOIarcO4T951ehnx4GHdIzdfv1yfnpUXl9_OT48vSiuApRKNbmRTcSMsaMvqljZopOaL2ohKmI61XMq6krk6qS0Atgyt5ga06LJZtkcO73XXYfgxYkxq5aLF5VJ7HMaoQEgQFGQFGf34Ar0bxuDz7yaKC5njkE9Ur5eonO-GbNtOouqYZ5WKceCZmr1C5VrgyuXgsHP5fqPh80bDFC7-Tr0eY1TnV_P_Zy9vN9lP96wNQ4wBO7UObqXDHwVUTVOhfK-mqcjkhwf7o1nh4h_3OAZPUcb85HsMz_J5ofUXnbW6Ng</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Hu, Bin</creator><creator>Wang, Wei</creator><creator>Ou, Shujun</creator><creator>Tang, Jiuyou</creator><creator>Li, Hua</creator><creator>Che, Ronghui</creator><creator>Zhang, Zhihua</creator><creator>Chai, Xuyang</creator><creator>Wang, Hongru</creator><creator>Wang, Yiqin</creator><creator>Liang, Chengzhen</creator><creator>Liu, Linchuan</creator><creator>Piao, Zhongze</creator><creator>Deng, Qiyun</creator><creator>Deng, Kun</creator><creator>Xu, Chi</creator><creator>Liang, Yan</creator><creator>Zhang, Lianhe</creator><creator>Li, Legong</creator><creator>Chu, Chengcai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies</title><author>Hu, Bin ; Wang, Wei ; Ou, Shujun ; Tang, Jiuyou ; Li, Hua ; Che, Ronghui ; Zhang, Zhihua ; Chai, Xuyang ; Wang, Hongru ; Wang, Yiqin ; Liang, Chengzhen ; Liu, Linchuan ; Piao, Zhongze ; Deng, Qiyun ; Deng, Kun ; Xu, Chi ; Liang, Yan ; Zhang, Lianhe ; Li, Legong ; Chu, Chengcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-eba79724b6c1ac35807eb9a4d5b626bf38499529292f9ac11e83eca4b1a6f3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>45</topic><topic>45/23</topic><topic>631/449/2491</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Anion Transport Proteins - genetics</topic><topic>Anion Transport Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Biological transport</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cells, Cultured</topic><topic>Cultivation</topic><topic>Domestication</topic><topic>Experiments</topic><topic>Field tests</topic><topic>Fixation</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Genetic aspects</topic><topic>Genetic Speciation</topic><topic>Genetic Variation</topic><topic>Grain cultivation</topic><topic>Human Genetics</topic><topic>Identification and classification</topic><topic>Labeling</topic><topic>letter</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Proteins</topic><topic>Rice</topic><topic>Species Specificity</topic><topic>Transgenic plants</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ou, Shujun</creatorcontrib><creatorcontrib>Tang, Jiuyou</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Che, Ronghui</creatorcontrib><creatorcontrib>Zhang, Zhihua</creatorcontrib><creatorcontrib>Chai, Xuyang</creatorcontrib><creatorcontrib>Wang, Hongru</creatorcontrib><creatorcontrib>Wang, Yiqin</creatorcontrib><creatorcontrib>Liang, Chengzhen</creatorcontrib><creatorcontrib>Liu, Linchuan</creatorcontrib><creatorcontrib>Piao, Zhongze</creatorcontrib><creatorcontrib>Deng, Qiyun</creatorcontrib><creatorcontrib>Deng, Kun</creatorcontrib><creatorcontrib>Xu, Chi</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Zhang, Lianhe</creatorcontrib><creatorcontrib>Li, Legong</creatorcontrib><creatorcontrib>Chu, Chengcai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Bin</au><au>Wang, Wei</au><au>Ou, Shujun</au><au>Tang, Jiuyou</au><au>Li, Hua</au><au>Che, Ronghui</au><au>Zhang, Zhihua</au><au>Chai, Xuyang</au><au>Wang, Hongru</au><au>Wang, Yiqin</au><au>Liang, Chengzhen</au><au>Liu, Linchuan</au><au>Piao, Zhongze</au><au>Deng, Qiyun</au><au>Deng, Kun</au><au>Xu, Chi</au><au>Liang, Yan</au><au>Zhang, Lianhe</au><au>Li, Legong</au><au>Chu, Chengcai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>47</volume><issue>7</issue><spage>834</spage><epage>838</epage><pages>834-838</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Chengcai Chu and colleagues show that genetic variation in NRT1.1B / OsNPF6.5 contributes to nitrate-use divergence between two main subspecies of Asian cultivated rice. Their findings may help to improve nitrogen-use efficiency in plant production. Asian cultivated rice ( Oryza sativa L.) consists of two main subspecies, indica and japonica . Indica has higher nitrate-absorption activity than japonica , but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B ( OsNPF6.5 ), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica . NRT1.1B - indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B - indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B - indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B - indica can potentially improve the NUE of japonica .</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26053497</pmid><doi>10.1038/ng.3337</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2015-07, Vol.47 (7), p.834-838
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_1691601921
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 45
45/23
631/449/2491
Agriculture
Alleles
Animal Genetics and Genomics
Animals
Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
Base Sequence
Biological transport
Biomedicine
Cancer Research
Cells, Cultured
Cultivation
Domestication
Experiments
Field tests
Fixation
Gene expression
Gene Function
Genetic aspects
Genetic Speciation
Genetic Variation
Grain cultivation
Human Genetics
Identification and classification
Labeling
letter
Nitrates
Nitrates - metabolism
Nitrogen
Oryza - genetics
Oryza - metabolism
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Polymorphism, Single Nucleotide
Proteins
Rice
Species Specificity
Transgenic plants
Xenopus laevis
title Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20in%20NRT1.1B%20contributes%20to%20nitrate-use%20divergence%20between%20rice%20subspecies&rft.jtitle=Nature%20genetics&rft.au=Hu,%20Bin&rft.date=2015-07-01&rft.volume=47&rft.issue=7&rft.spage=834&rft.epage=838&rft.pages=834-838&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3337&rft_dat=%3Cgale_proqu%3EA421323414%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694690539&rft_id=info:pmid/26053497&rft_galeid=A421323414&rfr_iscdi=true