Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement

The modeling, fabrication, cell loading, and mechanical and in vitro biological testing of biomimetic, interlockable, laser-made, concentric 3D scaffolds are presented. The scaffolds are made by multiphoton polymerization of an organic-inorganic zirconium silicate. Their mechanical properties are th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biointerphases 2015-06, Vol.10 (2), p.021011-021011
Hauptverfasser: Danilevicius, Paulius, Rezende, Rodrigo A, Pereira, Frederico D A S, Selimis, Alexandros, Kasyanov, Vladimir, Noritomi, Pedro Y, da Silva, Jorge V L, Chatzinikolaidou, Maria, Farsari, Maria, Mironov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 021011
container_issue 2
container_start_page 021011
container_title Biointerphases
container_volume 10
creator Danilevicius, Paulius
Rezende, Rodrigo A
Pereira, Frederico D A S
Selimis, Alexandros
Kasyanov, Vladimir
Noritomi, Pedro Y
da Silva, Jorge V L
Chatzinikolaidou, Maria
Farsari, Maria
Mironov, Vladimir
description The modeling, fabrication, cell loading, and mechanical and in vitro biological testing of biomimetic, interlockable, laser-made, concentric 3D scaffolds are presented. The scaffolds are made by multiphoton polymerization of an organic-inorganic zirconium silicate. Their mechanical properties are theoretically modeled using finite elements analysis and experimentally measured using a Microsquisher(®). They are subsequently loaded with preosteoblastic cells, which remain live after 24 and 72 h. The interlockable scaffolds have maintained their ability to fuse with tissue spheroids. This work represents a novel technological platform, enabling the rapid, laser-based, in situ 3D tissue biofabrication.
doi_str_mv 10.1116/1.4922646
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691289160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691289160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-a7004bccadfc9390f9df2a4a7559b712b2a550a9892a8194b7477e8ef6f133813</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EoqUw8AeQR5BI8fNX4hEKBaRKLDBbjvMMgaQpdjLw70nVwvTucHR13yHkHNgcAPQNzKXhXEt9QKaglMkkMH04ZiNkVmjBJuQkpU_GpFJaHJMJ18AkGDYly7shxqypv_CaNi5hzFpXIRX3tK197JJ3IXRNlWjoIu3rlAakafOBsasrimvv3rHFdX9KjoJrEp7t74y8LR9eF0_Z6uXxeXG7yjwvVJ-5fNxQeu-q4I0wLJgqcCddPo4uc-Ald0oxZwrDXQFGlrnMcyww6ABCFCBm5HLXu4nd94Cpt22dPDaNW2M3JAvaAC8MaDaiVzt0-0aKGOwm1q2LPxaY3WqzYPfaRvZiXzuULVb_5J8n8QvaxWXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691289160</pqid></control><display><type>article</type><title>Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Danilevicius, Paulius ; Rezende, Rodrigo A ; Pereira, Frederico D A S ; Selimis, Alexandros ; Kasyanov, Vladimir ; Noritomi, Pedro Y ; da Silva, Jorge V L ; Chatzinikolaidou, Maria ; Farsari, Maria ; Mironov, Vladimir</creator><creatorcontrib>Danilevicius, Paulius ; Rezende, Rodrigo A ; Pereira, Frederico D A S ; Selimis, Alexandros ; Kasyanov, Vladimir ; Noritomi, Pedro Y ; da Silva, Jorge V L ; Chatzinikolaidou, Maria ; Farsari, Maria ; Mironov, Vladimir</creatorcontrib><description>The modeling, fabrication, cell loading, and mechanical and in vitro biological testing of biomimetic, interlockable, laser-made, concentric 3D scaffolds are presented. The scaffolds are made by multiphoton polymerization of an organic-inorganic zirconium silicate. Their mechanical properties are theoretically modeled using finite elements analysis and experimentally measured using a Microsquisher(®). They are subsequently loaded with preosteoblastic cells, which remain live after 24 and 72 h. The interlockable scaffolds have maintained their ability to fuse with tissue spheroids. This work represents a novel technological platform, enabling the rapid, laser-based, in situ 3D tissue biofabrication.</description><identifier>ISSN: 1934-8630</identifier><identifier>EISSN: 1559-4106</identifier><identifier>DOI: 10.1116/1.4922646</identifier><identifier>PMID: 26104190</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Cell Line ; Cell Survival ; Cells, Immobilized - physiology ; Lasers ; Mice ; Osteoblasts - physiology ; Polymerization ; Silicates ; Stem Cells - physiology ; Tissue Engineering - methods ; Tissue Scaffolds ; Zirconium</subject><ispartof>Biointerphases, 2015-06, Vol.10 (2), p.021011-021011</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-a7004bccadfc9390f9df2a4a7559b712b2a550a9892a8194b7477e8ef6f133813</citedby><cites>FETCH-LOGICAL-c285t-a7004bccadfc9390f9df2a4a7559b712b2a550a9892a8194b7477e8ef6f133813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26104190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danilevicius, Paulius</creatorcontrib><creatorcontrib>Rezende, Rodrigo A</creatorcontrib><creatorcontrib>Pereira, Frederico D A S</creatorcontrib><creatorcontrib>Selimis, Alexandros</creatorcontrib><creatorcontrib>Kasyanov, Vladimir</creatorcontrib><creatorcontrib>Noritomi, Pedro Y</creatorcontrib><creatorcontrib>da Silva, Jorge V L</creatorcontrib><creatorcontrib>Chatzinikolaidou, Maria</creatorcontrib><creatorcontrib>Farsari, Maria</creatorcontrib><creatorcontrib>Mironov, Vladimir</creatorcontrib><title>Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement</title><title>Biointerphases</title><addtitle>Biointerphases</addtitle><description>The modeling, fabrication, cell loading, and mechanical and in vitro biological testing of biomimetic, interlockable, laser-made, concentric 3D scaffolds are presented. The scaffolds are made by multiphoton polymerization of an organic-inorganic zirconium silicate. Their mechanical properties are theoretically modeled using finite elements analysis and experimentally measured using a Microsquisher(®). They are subsequently loaded with preosteoblastic cells, which remain live after 24 and 72 h. The interlockable scaffolds have maintained their ability to fuse with tissue spheroids. This work represents a novel technological platform, enabling the rapid, laser-based, in situ 3D tissue biofabrication.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cells, Immobilized - physiology</subject><subject>Lasers</subject><subject>Mice</subject><subject>Osteoblasts - physiology</subject><subject>Polymerization</subject><subject>Silicates</subject><subject>Stem Cells - physiology</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Zirconium</subject><issn>1934-8630</issn><issn>1559-4106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAURS0EoqUw8AeQR5BI8fNX4hEKBaRKLDBbjvMMgaQpdjLw70nVwvTucHR13yHkHNgcAPQNzKXhXEt9QKaglMkkMH04ZiNkVmjBJuQkpU_GpFJaHJMJ18AkGDYly7shxqypv_CaNi5hzFpXIRX3tK197JJ3IXRNlWjoIu3rlAakafOBsasrimvv3rHFdX9KjoJrEp7t74y8LR9eF0_Z6uXxeXG7yjwvVJ-5fNxQeu-q4I0wLJgqcCddPo4uc-Ald0oxZwrDXQFGlrnMcyww6ABCFCBm5HLXu4nd94Cpt22dPDaNW2M3JAvaAC8MaDaiVzt0-0aKGOwm1q2LPxaY3WqzYPfaRvZiXzuULVb_5J8n8QvaxWXx</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Danilevicius, Paulius</creator><creator>Rezende, Rodrigo A</creator><creator>Pereira, Frederico D A S</creator><creator>Selimis, Alexandros</creator><creator>Kasyanov, Vladimir</creator><creator>Noritomi, Pedro Y</creator><creator>da Silva, Jorge V L</creator><creator>Chatzinikolaidou, Maria</creator><creator>Farsari, Maria</creator><creator>Mironov, Vladimir</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement</title><author>Danilevicius, Paulius ; Rezende, Rodrigo A ; Pereira, Frederico D A S ; Selimis, Alexandros ; Kasyanov, Vladimir ; Noritomi, Pedro Y ; da Silva, Jorge V L ; Chatzinikolaidou, Maria ; Farsari, Maria ; Mironov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-a7004bccadfc9390f9df2a4a7559b712b2a550a9892a8194b7477e8ef6f133813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cells, Immobilized - physiology</topic><topic>Lasers</topic><topic>Mice</topic><topic>Osteoblasts - physiology</topic><topic>Polymerization</topic><topic>Silicates</topic><topic>Stem Cells - physiology</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danilevicius, Paulius</creatorcontrib><creatorcontrib>Rezende, Rodrigo A</creatorcontrib><creatorcontrib>Pereira, Frederico D A S</creatorcontrib><creatorcontrib>Selimis, Alexandros</creatorcontrib><creatorcontrib>Kasyanov, Vladimir</creatorcontrib><creatorcontrib>Noritomi, Pedro Y</creatorcontrib><creatorcontrib>da Silva, Jorge V L</creatorcontrib><creatorcontrib>Chatzinikolaidou, Maria</creatorcontrib><creatorcontrib>Farsari, Maria</creatorcontrib><creatorcontrib>Mironov, Vladimir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biointerphases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danilevicius, Paulius</au><au>Rezende, Rodrigo A</au><au>Pereira, Frederico D A S</au><au>Selimis, Alexandros</au><au>Kasyanov, Vladimir</au><au>Noritomi, Pedro Y</au><au>da Silva, Jorge V L</au><au>Chatzinikolaidou, Maria</au><au>Farsari, Maria</au><au>Mironov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement</atitle><jtitle>Biointerphases</jtitle><addtitle>Biointerphases</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>021011</spage><epage>021011</epage><pages>021011-021011</pages><issn>1934-8630</issn><eissn>1559-4106</eissn><abstract>The modeling, fabrication, cell loading, and mechanical and in vitro biological testing of biomimetic, interlockable, laser-made, concentric 3D scaffolds are presented. The scaffolds are made by multiphoton polymerization of an organic-inorganic zirconium silicate. Their mechanical properties are theoretically modeled using finite elements analysis and experimentally measured using a Microsquisher(®). They are subsequently loaded with preosteoblastic cells, which remain live after 24 and 72 h. The interlockable scaffolds have maintained their ability to fuse with tissue spheroids. This work represents a novel technological platform, enabling the rapid, laser-based, in situ 3D tissue biofabrication.</abstract><cop>United States</cop><pmid>26104190</pmid><doi>10.1116/1.4922646</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1934-8630
ispartof Biointerphases, 2015-06, Vol.10 (2), p.021011-021011
issn 1934-8630
1559-4106
language eng
recordid cdi_proquest_miscellaneous_1691289160
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Animals
Cell Line
Cell Survival
Cells, Immobilized - physiology
Lasers
Mice
Osteoblasts - physiology
Polymerization
Silicates
Stem Cells - physiology
Tissue Engineering - methods
Tissue Scaffolds
Zirconium
title Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Burr-like,%20laser-made%203D%20microscaffolds%20for%20tissue%20spheroid%20encagement&rft.jtitle=Biointerphases&rft.au=Danilevicius,%20Paulius&rft.date=2015-06-01&rft.volume=10&rft.issue=2&rft.spage=021011&rft.epage=021011&rft.pages=021011-021011&rft.issn=1934-8630&rft.eissn=1559-4106&rft_id=info:doi/10.1116/1.4922646&rft_dat=%3Cproquest_cross%3E1691289160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691289160&rft_id=info:pmid/26104190&rfr_iscdi=true