Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes

We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 15...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-06, Vol.7 (24), p.13154-13163
Hauptverfasser: Ahmed, B, Shahid, Muhammad, Nagaraju, D. H, Anjum, D. H, Hedhili, Mohamed N, Alshareef, H. N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13163
container_issue 24
container_start_page 13154
container_title ACS applied materials & interfaces
container_volume 7
creator Ahmed, B
Shahid, Muhammad
Nagaraju, D. H
Anjum, D. H
Hedhili, Mohamed N
Alshareef, H. N
description We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.
doi_str_mv 10.1021/acsami.5b03395
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691283171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691283171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-7c7ef61e5872217d043980a469c42ddb0d6b26ec094e837ac91364bcda5ca2623</originalsourceid><addsrcrecordid>eNo9kU1PwzAMhiMEYjC4ckQ5IqSOfDVtj2MDNmkwxMc5cpMMMq3NSFrQ_j2FDU625MeW9T4InVEyoITRK9ARKjdIS8J5ke6hI1oIkeQsZfv_vRA9dBzjkhDJGUkPUY9J0tGUHaH6uQ0L0BY_QozuExrna-wX-N7POX6A2gdvIi43eNj4ymk8g40NeGzXPrpftvFfEAyeuLd3_ASNxeM2QLmyeObwtJtfQ9PY0O3X3th4gg4WsIr2dFf76PX25mU0SWbzu-loOEuAp6xJMp3ZhaQ2zTPGaGaI4EVOQMhCC2ZMSYwsmbSaFMLmPANdUC5FqQ2kGphkvI8utnfXwX-0NjaqclHb1Qpq69uoqCwoyznNaIee79C2rKxR6-AqCBv1l1EHXG6BLmu19G2ou88VJepHgNoKUDsB_BvbVXaL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691283171</pqid></control><display><type>article</type><title>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</title><source>American Chemical Society Journals</source><creator>Ahmed, B ; Shahid, Muhammad ; Nagaraju, D. H ; Anjum, D. H ; Hedhili, Mohamed N ; Alshareef, H. N</creator><creatorcontrib>Ahmed, B ; Shahid, Muhammad ; Nagaraju, D. H ; Anjum, D. H ; Hedhili, Mohamed N ; Alshareef, H. N</creatorcontrib><description>We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b03395</identifier><identifier>PMID: 26039512</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-06, Vol.7 (24), p.13154-13163</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b03395$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b03395$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26039512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, B</creatorcontrib><creatorcontrib>Shahid, Muhammad</creatorcontrib><creatorcontrib>Nagaraju, D. H</creatorcontrib><creatorcontrib>Anjum, D. H</creatorcontrib><creatorcontrib>Hedhili, Mohamed N</creatorcontrib><creatorcontrib>Alshareef, H. N</creatorcontrib><title>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kU1PwzAMhiMEYjC4ckQ5IqSOfDVtj2MDNmkwxMc5cpMMMq3NSFrQ_j2FDU625MeW9T4InVEyoITRK9ARKjdIS8J5ke6hI1oIkeQsZfv_vRA9dBzjkhDJGUkPUY9J0tGUHaH6uQ0L0BY_QozuExrna-wX-N7POX6A2gdvIi43eNj4ymk8g40NeGzXPrpftvFfEAyeuLd3_ASNxeM2QLmyeObwtJtfQ9PY0O3X3th4gg4WsIr2dFf76PX25mU0SWbzu-loOEuAp6xJMp3ZhaQ2zTPGaGaI4EVOQMhCC2ZMSYwsmbSaFMLmPANdUC5FqQ2kGphkvI8utnfXwX-0NjaqclHb1Qpq69uoqCwoyznNaIee79C2rKxR6-AqCBv1l1EHXG6BLmu19G2ou88VJepHgNoKUDsB_BvbVXaL</recordid><startdate>20150624</startdate><enddate>20150624</enddate><creator>Ahmed, B</creator><creator>Shahid, Muhammad</creator><creator>Nagaraju, D. H</creator><creator>Anjum, D. H</creator><creator>Hedhili, Mohamed N</creator><creator>Alshareef, H. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150624</creationdate><title>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</title><author>Ahmed, B ; Shahid, Muhammad ; Nagaraju, D. H ; Anjum, D. H ; Hedhili, Mohamed N ; Alshareef, H. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-7c7ef61e5872217d043980a469c42ddb0d6b26ec094e837ac91364bcda5ca2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, B</creatorcontrib><creatorcontrib>Shahid, Muhammad</creatorcontrib><creatorcontrib>Nagaraju, D. H</creatorcontrib><creatorcontrib>Anjum, D. H</creatorcontrib><creatorcontrib>Hedhili, Mohamed N</creatorcontrib><creatorcontrib>Alshareef, H. N</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, B</au><au>Shahid, Muhammad</au><au>Nagaraju, D. H</au><au>Anjum, D. H</au><au>Hedhili, Mohamed N</au><au>Alshareef, H. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-06-24</date><risdate>2015</risdate><volume>7</volume><issue>24</issue><spage>13154</spage><epage>13163</epage><pages>13154-13163</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26039512</pmid><doi>10.1021/acsami.5b03395</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-06, Vol.7 (24), p.13154-13163
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1691283171
source American Chemical Society Journals
title Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Passivation%20of%20MoO3%20Nanorods%20by%20Atomic%20Layer%20Deposition%20toward%20High%20Rate%20Durable%20Li%20Ion%20Battery%20Anodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ahmed,%20B&rft.date=2015-06-24&rft.volume=7&rft.issue=24&rft.spage=13154&rft.epage=13163&rft.pages=13154-13163&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b03395&rft_dat=%3Cproquest_pubme%3E1691283171%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691283171&rft_id=info:pmid/26039512&rfr_iscdi=true