Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes
We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 15...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-06, Vol.7 (24), p.13154-13163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13163 |
---|---|
container_issue | 24 |
container_start_page | 13154 |
container_title | ACS applied materials & interfaces |
container_volume | 7 |
creator | Ahmed, B Shahid, Muhammad Nagaraju, D. H Anjum, D. H Hedhili, Mohamed N Alshareef, H. N |
description | We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating. |
doi_str_mv | 10.1021/acsami.5b03395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691283171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691283171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-7c7ef61e5872217d043980a469c42ddb0d6b26ec094e837ac91364bcda5ca2623</originalsourceid><addsrcrecordid>eNo9kU1PwzAMhiMEYjC4ckQ5IqSOfDVtj2MDNmkwxMc5cpMMMq3NSFrQ_j2FDU625MeW9T4InVEyoITRK9ARKjdIS8J5ke6hI1oIkeQsZfv_vRA9dBzjkhDJGUkPUY9J0tGUHaH6uQ0L0BY_QozuExrna-wX-N7POX6A2gdvIi43eNj4ymk8g40NeGzXPrpftvFfEAyeuLd3_ASNxeM2QLmyeObwtJtfQ9PY0O3X3th4gg4WsIr2dFf76PX25mU0SWbzu-loOEuAp6xJMp3ZhaQ2zTPGaGaI4EVOQMhCC2ZMSYwsmbSaFMLmPANdUC5FqQ2kGphkvI8utnfXwX-0NjaqclHb1Qpq69uoqCwoyznNaIee79C2rKxR6-AqCBv1l1EHXG6BLmu19G2ou88VJepHgNoKUDsB_BvbVXaL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691283171</pqid></control><display><type>article</type><title>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</title><source>American Chemical Society Journals</source><creator>Ahmed, B ; Shahid, Muhammad ; Nagaraju, D. H ; Anjum, D. H ; Hedhili, Mohamed N ; Alshareef, H. N</creator><creatorcontrib>Ahmed, B ; Shahid, Muhammad ; Nagaraju, D. H ; Anjum, D. H ; Hedhili, Mohamed N ; Alshareef, H. N</creatorcontrib><description>We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b03395</identifier><identifier>PMID: 26039512</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2015-06, Vol.7 (24), p.13154-13163</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b03395$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b03395$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26039512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, B</creatorcontrib><creatorcontrib>Shahid, Muhammad</creatorcontrib><creatorcontrib>Nagaraju, D. H</creatorcontrib><creatorcontrib>Anjum, D. H</creatorcontrib><creatorcontrib>Hedhili, Mohamed N</creatorcontrib><creatorcontrib>Alshareef, H. N</creatorcontrib><title>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kU1PwzAMhiMEYjC4ckQ5IqSOfDVtj2MDNmkwxMc5cpMMMq3NSFrQ_j2FDU625MeW9T4InVEyoITRK9ARKjdIS8J5ke6hI1oIkeQsZfv_vRA9dBzjkhDJGUkPUY9J0tGUHaH6uQ0L0BY_QozuExrna-wX-N7POX6A2gdvIi43eNj4ymk8g40NeGzXPrpftvFfEAyeuLd3_ASNxeM2QLmyeObwtJtfQ9PY0O3X3th4gg4WsIr2dFf76PX25mU0SWbzu-loOEuAp6xJMp3ZhaQ2zTPGaGaI4EVOQMhCC2ZMSYwsmbSaFMLmPANdUC5FqQ2kGphkvI8utnfXwX-0NjaqclHb1Qpq69uoqCwoyznNaIee79C2rKxR6-AqCBv1l1EHXG6BLmu19G2ou88VJepHgNoKUDsB_BvbVXaL</recordid><startdate>20150624</startdate><enddate>20150624</enddate><creator>Ahmed, B</creator><creator>Shahid, Muhammad</creator><creator>Nagaraju, D. H</creator><creator>Anjum, D. H</creator><creator>Hedhili, Mohamed N</creator><creator>Alshareef, H. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150624</creationdate><title>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</title><author>Ahmed, B ; Shahid, Muhammad ; Nagaraju, D. H ; Anjum, D. H ; Hedhili, Mohamed N ; Alshareef, H. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-7c7ef61e5872217d043980a469c42ddb0d6b26ec094e837ac91364bcda5ca2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, B</creatorcontrib><creatorcontrib>Shahid, Muhammad</creatorcontrib><creatorcontrib>Nagaraju, D. H</creatorcontrib><creatorcontrib>Anjum, D. H</creatorcontrib><creatorcontrib>Hedhili, Mohamed N</creatorcontrib><creatorcontrib>Alshareef, H. N</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, B</au><au>Shahid, Muhammad</au><au>Nagaraju, D. H</au><au>Anjum, D. H</au><au>Hedhili, Mohamed N</au><au>Alshareef, H. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-06-24</date><risdate>2015</risdate><volume>7</volume><issue>24</issue><spage>13154</spage><epage>13163</epage><pages>13154-13163</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26039512</pmid><doi>10.1021/acsami.5b03395</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2015-06, Vol.7 (24), p.13154-13163 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1691283171 |
source | American Chemical Society Journals |
title | Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Passivation%20of%20MoO3%20Nanorods%20by%20Atomic%20Layer%20Deposition%20toward%20High%20Rate%20Durable%20Li%20Ion%20Battery%20Anodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ahmed,%20B&rft.date=2015-06-24&rft.volume=7&rft.issue=24&rft.spage=13154&rft.epage=13163&rft.pages=13154-13163&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b03395&rft_dat=%3Cproquest_pubme%3E1691283171%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691283171&rft_id=info:pmid/26039512&rfr_iscdi=true |