ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS

This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 1994-08, Vol.10 (3), p.295-330
1. Verfasser: O'Rorke, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 3
container_start_page 295
container_title Computational intelligence
container_volume 10
creator O'Rorke, Paul
description This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.
doi_str_mv 10.1111/j.1467-8640.1994.tb00167.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16910659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16910659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</originalsourceid><addsrcrecordid>eNqVkF1r2zAUhkVZoVnW_2DG2J1dfVvKzXBsLxNznZKPbuxGKLYMztyks1Ka_vvJJOS-ujmcc149Bx4APiMYIf_uthGiPA4Fp34gJY0OGwgRj6PjFRhdVh_ACApMw1gSdgM-OreFPkWoGAGVTLN1ulLzMjC7Osh_PxRJmQx9OE2WeRYUebIoVTmbBKnvg-Vqnal8GagyyNRjvvCjbH6fqHL5CVw3pnP29lzHYP09X6U_wmI-U2lShBUhkIXNBktRGYo32DLKjbACYWKFqP2CSoZgzYXgFecMs5ramuCGQoNIjDGtICVj8PXEfe73_16sO-in1lW268zO7l-cRlwiyJn0wckpWPV753rb6Oe-fTL9m0ZQD_b0Vg-K9KBID_b02Z4--s9fzleMq0zX9GZXte5CIBQT7hWOwbdT7LXt7Ns7Duh0rkosmSeEJ0LrDvZ4IZj-r-YxiZn-Vc60-CPxz7iAekr-Ay0Riwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16910659</pqid></control><display><type>article</type><title>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>O'Rorke, Paul</creator><creatorcontrib>O'Rorke, Paul</creatorcontrib><description>This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/j.1467-8640.1994.tb00167.x</identifier><identifier>CODEN: COMIE6</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; decision making ; diagnosis ; Exact sciences and technology ; explanation ; explanation-based learning ; Key words: abduction ; Learning and adaptive systems ; postdiction ; qualitative reasoning</subject><ispartof>Computational intelligence, 1994-08, Vol.10 (3), p.295-330</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</citedby><cites>FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8640.1994.tb00167.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8640.1994.tb00167.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3423601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Rorke, Paul</creatorcontrib><title>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</title><title>Computational intelligence</title><description>This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>decision making</subject><subject>diagnosis</subject><subject>Exact sciences and technology</subject><subject>explanation</subject><subject>explanation-based learning</subject><subject>Key words: abduction</subject><subject>Learning and adaptive systems</subject><subject>postdiction</subject><subject>qualitative reasoning</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkF1r2zAUhkVZoVnW_2DG2J1dfVvKzXBsLxNznZKPbuxGKLYMztyks1Ka_vvJJOS-ujmcc149Bx4APiMYIf_uthGiPA4Fp34gJY0OGwgRj6PjFRhdVh_ACApMw1gSdgM-OreFPkWoGAGVTLN1ulLzMjC7Osh_PxRJmQx9OE2WeRYUebIoVTmbBKnvg-Vqnal8GagyyNRjvvCjbH6fqHL5CVw3pnP29lzHYP09X6U_wmI-U2lShBUhkIXNBktRGYo32DLKjbACYWKFqP2CSoZgzYXgFecMs5ramuCGQoNIjDGtICVj8PXEfe73_16sO-in1lW268zO7l-cRlwiyJn0wckpWPV753rb6Oe-fTL9m0ZQD_b0Vg-K9KBID_b02Z4--s9fzleMq0zX9GZXte5CIBQT7hWOwbdT7LXt7Ns7Duh0rkosmSeEJ0LrDvZ4IZj-r-YxiZn-Vc60-CPxz7iAekr-Ay0Riwo</recordid><startdate>199408</startdate><enddate>199408</enddate><creator>O'Rorke, Paul</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>199408</creationdate><title>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</title><author>O'Rorke, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>decision making</topic><topic>diagnosis</topic><topic>Exact sciences and technology</topic><topic>explanation</topic><topic>explanation-based learning</topic><topic>Key words: abduction</topic><topic>Learning and adaptive systems</topic><topic>postdiction</topic><topic>qualitative reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Rorke, Paul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Rorke, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</atitle><jtitle>Computational intelligence</jtitle><date>1994-08</date><risdate>1994</risdate><volume>10</volume><issue>3</issue><spage>295</spage><epage>330</epage><pages>295-330</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><coden>COMIE6</coden><abstract>This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8640.1994.tb00167.x</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 1994-08, Vol.10 (3), p.295-330
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_miscellaneous_16910659
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
decision making
diagnosis
Exact sciences and technology
explanation
explanation-based learning
Key words: abduction
Learning and adaptive systems
postdiction
qualitative reasoning
title ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ABDUCTION%20and%20EXPLANATION-BASED%20LEARNING:%20CASE%20STUDIES%20IN%20DIVERSE%20DOMAINS&rft.jtitle=Computational%20intelligence&rft.au=O'Rorke,%20Paul&rft.date=1994-08&rft.volume=10&rft.issue=3&rft.spage=295&rft.epage=330&rft.pages=295-330&rft.issn=0824-7935&rft.eissn=1467-8640&rft.coden=COMIE6&rft_id=info:doi/10.1111/j.1467-8640.1994.tb00167.x&rft_dat=%3Cproquest_cross%3E16910659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16910659&rft_id=info:pmid/&rfr_iscdi=true