ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS
This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explai...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 1994-08, Vol.10 (3), p.295-330 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 3 |
container_start_page | 295 |
container_title | Computational intelligence |
container_volume | 10 |
creator | O'Rorke, Paul |
description | This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic. |
doi_str_mv | 10.1111/j.1467-8640.1994.tb00167.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16910659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16910659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</originalsourceid><addsrcrecordid>eNqVkF1r2zAUhkVZoVnW_2DG2J1dfVvKzXBsLxNznZKPbuxGKLYMztyks1Ka_vvJJOS-ujmcc149Bx4APiMYIf_uthGiPA4Fp34gJY0OGwgRj6PjFRhdVh_ACApMw1gSdgM-OreFPkWoGAGVTLN1ulLzMjC7Osh_PxRJmQx9OE2WeRYUebIoVTmbBKnvg-Vqnal8GagyyNRjvvCjbH6fqHL5CVw3pnP29lzHYP09X6U_wmI-U2lShBUhkIXNBktRGYo32DLKjbACYWKFqP2CSoZgzYXgFecMs5ramuCGQoNIjDGtICVj8PXEfe73_16sO-in1lW268zO7l-cRlwiyJn0wckpWPV753rb6Oe-fTL9m0ZQD_b0Vg-K9KBID_b02Z4--s9fzleMq0zX9GZXte5CIBQT7hWOwbdT7LXt7Ns7Duh0rkosmSeEJ0LrDvZ4IZj-r-YxiZn-Vc60-CPxz7iAekr-Ay0Riwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16910659</pqid></control><display><type>article</type><title>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>O'Rorke, Paul</creator><creatorcontrib>O'Rorke, Paul</creatorcontrib><description>This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/j.1467-8640.1994.tb00167.x</identifier><identifier>CODEN: COMIE6</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; decision making ; diagnosis ; Exact sciences and technology ; explanation ; explanation-based learning ; Key words: abduction ; Learning and adaptive systems ; postdiction ; qualitative reasoning</subject><ispartof>Computational intelligence, 1994-08, Vol.10 (3), p.295-330</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</citedby><cites>FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8640.1994.tb00167.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8640.1994.tb00167.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3423601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Rorke, Paul</creatorcontrib><title>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</title><title>Computational intelligence</title><description>This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>decision making</subject><subject>diagnosis</subject><subject>Exact sciences and technology</subject><subject>explanation</subject><subject>explanation-based learning</subject><subject>Key words: abduction</subject><subject>Learning and adaptive systems</subject><subject>postdiction</subject><subject>qualitative reasoning</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkF1r2zAUhkVZoVnW_2DG2J1dfVvKzXBsLxNznZKPbuxGKLYMztyks1Ka_vvJJOS-ujmcc149Bx4APiMYIf_uthGiPA4Fp34gJY0OGwgRj6PjFRhdVh_ACApMw1gSdgM-OreFPkWoGAGVTLN1ulLzMjC7Osh_PxRJmQx9OE2WeRYUebIoVTmbBKnvg-Vqnal8GagyyNRjvvCjbH6fqHL5CVw3pnP29lzHYP09X6U_wmI-U2lShBUhkIXNBktRGYo32DLKjbACYWKFqP2CSoZgzYXgFecMs5ramuCGQoNIjDGtICVj8PXEfe73_16sO-in1lW268zO7l-cRlwiyJn0wckpWPV753rb6Oe-fTL9m0ZQD_b0Vg-K9KBID_b02Z4--s9fzleMq0zX9GZXte5CIBQT7hWOwbdT7LXt7Ns7Duh0rkosmSeEJ0LrDvZ4IZj-r-YxiZn-Vc60-CPxz7iAekr-Ay0Riwo</recordid><startdate>199408</startdate><enddate>199408</enddate><creator>O'Rorke, Paul</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>199408</creationdate><title>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</title><author>O'Rorke, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-fb298ca42b2e546a8e8123e88db2949510d6886c66525d4ed32f40a137224c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>decision making</topic><topic>diagnosis</topic><topic>Exact sciences and technology</topic><topic>explanation</topic><topic>explanation-based learning</topic><topic>Key words: abduction</topic><topic>Learning and adaptive systems</topic><topic>postdiction</topic><topic>qualitative reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Rorke, Paul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Rorke, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS</atitle><jtitle>Computational intelligence</jtitle><date>1994-08</date><risdate>1994</risdate><volume>10</volume><issue>3</issue><spage>295</spage><epage>330</epage><pages>295-330</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><coden>COMIE6</coden><abstract>This paper presents a knowledge‐based learning method and reports on case studies in different domains. The method integrates abduction and explanation‐based learning. Abduction provides an improved method for constructing explanations. The improvement enlarges the set of examples that can be explained so that one can learn from additional examples using traditional explanation‐based macro learning. Abduction also provides a form of knowledge level learning. Descriptions of case studies show how to set up abduction engines for tasks in particular domains. The case studies involve over a hundred examples taken from diverse domains requiring logical, physical, and psychological knowledge and reasoning. The case studies are relevant to a wide range of practical tasks including natural language understanding and plan recognition; qualitative physical reasoning and postdiction; diagnosis and signal interpretation; and decision making under uncertainty. The descriptions of the case studies include an example, its explanation, and discussions of what is learned by macro‐learning and by abductive inference. The paper discusses how to provide and represent the domain knowledge and meta‐knowledge needed for abduction and search control. The main conclusion is that abductive inference is important for learning. Abduction and macro‐learning are complementary and synergistic.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8640.1994.tb00167.x</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 1994-08, Vol.10 (3), p.295-330 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_miscellaneous_16910659 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Artificial intelligence Computer science control theory systems decision making diagnosis Exact sciences and technology explanation explanation-based learning Key words: abduction Learning and adaptive systems postdiction qualitative reasoning |
title | ABDUCTION and EXPLANATION-BASED LEARNING: CASE STUDIES IN DIVERSE DOMAINS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ABDUCTION%20and%20EXPLANATION-BASED%20LEARNING:%20CASE%20STUDIES%20IN%20DIVERSE%20DOMAINS&rft.jtitle=Computational%20intelligence&rft.au=O'Rorke,%20Paul&rft.date=1994-08&rft.volume=10&rft.issue=3&rft.spage=295&rft.epage=330&rft.pages=295-330&rft.issn=0824-7935&rft.eissn=1467-8640&rft.coden=COMIE6&rft_id=info:doi/10.1111/j.1467-8640.1994.tb00167.x&rft_dat=%3Cproquest_cross%3E16910659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16910659&rft_id=info:pmid/&rfr_iscdi=true |