Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors

Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-06, Vol.9 (6), p.5818-5824
Hauptverfasser: Choi, Kyoungjun, Nam, Sooji, Lee, Youngbin, Lee, Mijin, Jang, Jaeyoung, Kim, Sang Jin, Jeong, Yong Jin, Kim, Hyeongkeun, Bae, Sukang, Yoo, Ji-Beom, Cho, Sung M, Choi, Jae-Boong, Chung, Ho Kyoon, Ahn, Jong-Hyun, Park, Chan Eon, Hong, Byung Hee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5824
container_issue 6
container_start_page 5818
container_title ACS nano
container_volume 9
creator Choi, Kyoungjun
Nam, Sooji
Lee, Youngbin
Lee, Mijin
Jang, Jaeyoung
Kim, Sang Jin
Jeong, Yong Jin
Kim, Hyeongkeun
Bae, Sukang
Yoo, Ji-Beom
Cho, Sung M
Choi, Jae-Boong
Chung, Ho Kyoon
Ahn, Jong-Hyun
Park, Chan Eon
Hong, Byung Hee
description Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 × 10 cm2 large-area graphene films synthesized by chemical vapor deposition (CVD). The WVTR was measured to be as low as 10–4 g/m2·day initially, and stabilized at ∼0.48 g/m2·day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-passivated organic field-effect transistors (OFETs) exhibited excellent environmental stability as well as a prolonged lifetime even after 500 bending cycles with strain of 2.3%. We expect that our results would be a good reference showing the graphene’s potential as gas barriers for organic electronics.
doi_str_mv 10.1021/acsnano.5b01161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691016624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691016624</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-744b2a0df49ae28e7c71eeffb34032596d87bbbb59f034f7738756f511a7d4253</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7P3iRHQbol_Ujao45tCsJgzI9bSNs3mtE2XdKC_vdGOnczlwTe5_cj74PQNSVTSkI6k4VrZGOmSU4oZfQEjWkWsYCk7P30-E7oCF04tyMk4Sln52gUJlmaZpSM0X4DZV9Aid9kBxa_ytZYvLWycbV2TpsGb_wAG4VXVraf0ABeSYcfpLXa80td1Q4rn1lW8KXzCvDafshGF34EVRkslIKiGxq164x1l-hMycrB1eGeoJflYjt_DJ7Xq6f5_XMgoyzrAh7HeShJqeJMQpgCLzgFUCqPYhL5_7My5bk_SaZIFCvOo5QnTCWUSl7GYRJN0O3Q21qz78F1wm9UQFXJBkzvBGVeAGUsjD06G9DCGucsKNFaXUv7LSgRv57FwbM4ePaJm0N5n9dQHvk_sR64GwCfFDvT28bv-m_dD2RXiXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691016624</pqid></control><display><type>article</type><title>Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors</title><source>American Chemical Society Journals</source><creator>Choi, Kyoungjun ; Nam, Sooji ; Lee, Youngbin ; Lee, Mijin ; Jang, Jaeyoung ; Kim, Sang Jin ; Jeong, Yong Jin ; Kim, Hyeongkeun ; Bae, Sukang ; Yoo, Ji-Beom ; Cho, Sung M ; Choi, Jae-Boong ; Chung, Ho Kyoon ; Ahn, Jong-Hyun ; Park, Chan Eon ; Hong, Byung Hee</creator><creatorcontrib>Choi, Kyoungjun ; Nam, Sooji ; Lee, Youngbin ; Lee, Mijin ; Jang, Jaeyoung ; Kim, Sang Jin ; Jeong, Yong Jin ; Kim, Hyeongkeun ; Bae, Sukang ; Yoo, Ji-Beom ; Cho, Sung M ; Choi, Jae-Boong ; Chung, Ho Kyoon ; Ahn, Jong-Hyun ; Park, Chan Eon ; Hong, Byung Hee</creatorcontrib><description>Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 × 10 cm2 large-area graphene films synthesized by chemical vapor deposition (CVD). The WVTR was measured to be as low as 10–4 g/m2·day initially, and stabilized at ∼0.48 g/m2·day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-passivated organic field-effect transistors (OFETs) exhibited excellent environmental stability as well as a prolonged lifetime even after 500 bending cycles with strain of 2.3%. We expect that our results would be a good reference showing the graphene’s potential as gas barriers for organic electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b01161</identifier><identifier>PMID: 25988910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2015-06, Vol.9 (6), p.5818-5824</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-744b2a0df49ae28e7c71eeffb34032596d87bbbb59f034f7738756f511a7d4253</citedby><cites>FETCH-LOGICAL-a399t-744b2a0df49ae28e7c71eeffb34032596d87bbbb59f034f7738756f511a7d4253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b01161$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b01161$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25988910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Kyoungjun</creatorcontrib><creatorcontrib>Nam, Sooji</creatorcontrib><creatorcontrib>Lee, Youngbin</creatorcontrib><creatorcontrib>Lee, Mijin</creatorcontrib><creatorcontrib>Jang, Jaeyoung</creatorcontrib><creatorcontrib>Kim, Sang Jin</creatorcontrib><creatorcontrib>Jeong, Yong Jin</creatorcontrib><creatorcontrib>Kim, Hyeongkeun</creatorcontrib><creatorcontrib>Bae, Sukang</creatorcontrib><creatorcontrib>Yoo, Ji-Beom</creatorcontrib><creatorcontrib>Cho, Sung M</creatorcontrib><creatorcontrib>Choi, Jae-Boong</creatorcontrib><creatorcontrib>Chung, Ho Kyoon</creatorcontrib><creatorcontrib>Ahn, Jong-Hyun</creatorcontrib><creatorcontrib>Park, Chan Eon</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><title>Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 × 10 cm2 large-area graphene films synthesized by chemical vapor deposition (CVD). The WVTR was measured to be as low as 10–4 g/m2·day initially, and stabilized at ∼0.48 g/m2·day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-passivated organic field-effect transistors (OFETs) exhibited excellent environmental stability as well as a prolonged lifetime even after 500 bending cycles with strain of 2.3%. We expect that our results would be a good reference showing the graphene’s potential as gas barriers for organic electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4Mobk7P3iRHQbol_Ujao45tCsJgzI9bSNs3mtE2XdKC_vdGOnczlwTe5_cj74PQNSVTSkI6k4VrZGOmSU4oZfQEjWkWsYCk7P30-E7oCF04tyMk4Sln52gUJlmaZpSM0X4DZV9Aid9kBxa_ytZYvLWycbV2TpsGb_wAG4VXVraf0ABeSYcfpLXa80td1Q4rn1lW8KXzCvDafshGF34EVRkslIKiGxq164x1l-hMycrB1eGeoJflYjt_DJ7Xq6f5_XMgoyzrAh7HeShJqeJMQpgCLzgFUCqPYhL5_7My5bk_SaZIFCvOo5QnTCWUSl7GYRJN0O3Q21qz78F1wm9UQFXJBkzvBGVeAGUsjD06G9DCGucsKNFaXUv7LSgRv57FwbM4ePaJm0N5n9dQHvk_sR64GwCfFDvT28bv-m_dD2RXiXg</recordid><startdate>20150623</startdate><enddate>20150623</enddate><creator>Choi, Kyoungjun</creator><creator>Nam, Sooji</creator><creator>Lee, Youngbin</creator><creator>Lee, Mijin</creator><creator>Jang, Jaeyoung</creator><creator>Kim, Sang Jin</creator><creator>Jeong, Yong Jin</creator><creator>Kim, Hyeongkeun</creator><creator>Bae, Sukang</creator><creator>Yoo, Ji-Beom</creator><creator>Cho, Sung M</creator><creator>Choi, Jae-Boong</creator><creator>Chung, Ho Kyoon</creator><creator>Ahn, Jong-Hyun</creator><creator>Park, Chan Eon</creator><creator>Hong, Byung Hee</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150623</creationdate><title>Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors</title><author>Choi, Kyoungjun ; Nam, Sooji ; Lee, Youngbin ; Lee, Mijin ; Jang, Jaeyoung ; Kim, Sang Jin ; Jeong, Yong Jin ; Kim, Hyeongkeun ; Bae, Sukang ; Yoo, Ji-Beom ; Cho, Sung M ; Choi, Jae-Boong ; Chung, Ho Kyoon ; Ahn, Jong-Hyun ; Park, Chan Eon ; Hong, Byung Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-744b2a0df49ae28e7c71eeffb34032596d87bbbb59f034f7738756f511a7d4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Kyoungjun</creatorcontrib><creatorcontrib>Nam, Sooji</creatorcontrib><creatorcontrib>Lee, Youngbin</creatorcontrib><creatorcontrib>Lee, Mijin</creatorcontrib><creatorcontrib>Jang, Jaeyoung</creatorcontrib><creatorcontrib>Kim, Sang Jin</creatorcontrib><creatorcontrib>Jeong, Yong Jin</creatorcontrib><creatorcontrib>Kim, Hyeongkeun</creatorcontrib><creatorcontrib>Bae, Sukang</creatorcontrib><creatorcontrib>Yoo, Ji-Beom</creatorcontrib><creatorcontrib>Cho, Sung M</creatorcontrib><creatorcontrib>Choi, Jae-Boong</creatorcontrib><creatorcontrib>Chung, Ho Kyoon</creatorcontrib><creatorcontrib>Ahn, Jong-Hyun</creatorcontrib><creatorcontrib>Park, Chan Eon</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Kyoungjun</au><au>Nam, Sooji</au><au>Lee, Youngbin</au><au>Lee, Mijin</au><au>Jang, Jaeyoung</au><au>Kim, Sang Jin</au><au>Jeong, Yong Jin</au><au>Kim, Hyeongkeun</au><au>Bae, Sukang</au><au>Yoo, Ji-Beom</au><au>Cho, Sung M</au><au>Choi, Jae-Boong</au><au>Chung, Ho Kyoon</au><au>Ahn, Jong-Hyun</au><au>Park, Chan Eon</au><au>Hong, Byung Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-06-23</date><risdate>2015</risdate><volume>9</volume><issue>6</issue><spage>5818</spage><epage>5824</epage><pages>5818-5824</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 × 10 cm2 large-area graphene films synthesized by chemical vapor deposition (CVD). The WVTR was measured to be as low as 10–4 g/m2·day initially, and stabilized at ∼0.48 g/m2·day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-passivated organic field-effect transistors (OFETs) exhibited excellent environmental stability as well as a prolonged lifetime even after 500 bending cycles with strain of 2.3%. We expect that our results would be a good reference showing the graphene’s potential as gas barriers for organic electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25988910</pmid><doi>10.1021/acsnano.5b01161</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-06, Vol.9 (6), p.5818-5824
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1691016624
source American Chemical Society Journals
title Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Water%20Vapor%20Transmission%20Rate%20of%20Graphene%20Gas%20Barrier%20Films%20for%20Flexible%20Organic%20Field-Effect%20Transistors&rft.jtitle=ACS%20nano&rft.au=Choi,%20Kyoungjun&rft.date=2015-06-23&rft.volume=9&rft.issue=6&rft.spage=5818&rft.epage=5824&rft.pages=5818-5824&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b01161&rft_dat=%3Cproquest_cross%3E1691016624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691016624&rft_id=info:pmid/25988910&rfr_iscdi=true