Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery

Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal–air batteries and fuel cells. Alloying has been studied to finely tune the catalysts’ electronic structures t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-06, Vol.9 (6), p.6493-6501
Hauptverfasser: Nam, Gyutae, Park, Joohyuk, Choi, Min, Oh, Pilgun, Park, Suhyeon, Kim, Min Gyu, Park, Noejung, Cho, Jaephil, Lee, Jang-Soo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6501
container_issue 6
container_start_page 6493
container_title ACS nano
container_volume 9
creator Nam, Gyutae
Park, Joohyuk
Choi, Min
Oh, Pilgun
Park, Suhyeon
Kim, Min Gyu
Park, Noejung
Cho, Jaephil
Lee, Jang-Soo
description Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal–air batteries and fuel cells. Alloying has been studied to finely tune the catalysts’ electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH–, thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn–air battery.
doi_str_mv 10.1021/acsnano.5b02266
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691015470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691015470</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-c124706ca02d4e4bbeb0725796a17f5f62ad45a3dcbd703d5c291706d1a7c6863</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EovzNbMgjEgrYTmwnYwmFIiEYAAmxRDe2Q4PSuNgOUjfegTfkSTBqYWO6Z_jOOboHoUNKTilh9AyU76G3p7wmjAmxgXZokYqE5OJp809zOkK73r8SwmUuxTYaMV4ImQuxg4YSXG37pLQQjMaldebr4_N-ZroOX_7IcsC3sWEBLrSqMx6Dx9P2ZdYt8ViF9t1g6DW-GBzUncGTzqjgrIIA3dIHjxvrMODnPiaNW4fPIQTjlvtoq4HOm4P13UOPl5OHcprc3F1dl-ObBNKiCImiLJNEKCBMZyara1MTybgsBFDZ8EYw0BmHVKtaS5JqrlhBo0FTkErkIt1Dx6vchbNvg_Ghmrdexd-gN3bwFRUFJZTHkoierVDlrPfONNXCtXNwy4qS6mfrar11td46Oo7W4UM9N_qP_x03AicrIDqrVzu4Pv76b9w3Nv6NjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691015470</pqid></control><display><type>article</type><title>Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery</title><source>American Chemical Society Journals</source><creator>Nam, Gyutae ; Park, Joohyuk ; Choi, Min ; Oh, Pilgun ; Park, Suhyeon ; Kim, Min Gyu ; Park, Noejung ; Cho, Jaephil ; Lee, Jang-Soo</creator><creatorcontrib>Nam, Gyutae ; Park, Joohyuk ; Choi, Min ; Oh, Pilgun ; Park, Suhyeon ; Kim, Min Gyu ; Park, Noejung ; Cho, Jaephil ; Lee, Jang-Soo</creatorcontrib><description>Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal–air batteries and fuel cells. Alloying has been studied to finely tune the catalysts’ electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH–, thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn–air battery.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b02266</identifier><identifier>PMID: 25967866</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2015-06, Vol.9 (6), p.6493-6501</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-c124706ca02d4e4bbeb0725796a17f5f62ad45a3dcbd703d5c291706d1a7c6863</citedby><cites>FETCH-LOGICAL-a399t-c124706ca02d4e4bbeb0725796a17f5f62ad45a3dcbd703d5c291706d1a7c6863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b02266$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b02266$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25967866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Gyutae</creatorcontrib><creatorcontrib>Park, Joohyuk</creatorcontrib><creatorcontrib>Choi, Min</creatorcontrib><creatorcontrib>Oh, Pilgun</creatorcontrib><creatorcontrib>Park, Suhyeon</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Park, Noejung</creatorcontrib><creatorcontrib>Cho, Jaephil</creatorcontrib><creatorcontrib>Lee, Jang-Soo</creatorcontrib><title>Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal–air batteries and fuel cells. Alloying has been studied to finely tune the catalysts’ electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH–, thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn–air battery.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EovzNbMgjEgrYTmwnYwmFIiEYAAmxRDe2Q4PSuNgOUjfegTfkSTBqYWO6Z_jOOboHoUNKTilh9AyU76G3p7wmjAmxgXZokYqE5OJp809zOkK73r8SwmUuxTYaMV4ImQuxg4YSXG37pLQQjMaldebr4_N-ZroOX_7IcsC3sWEBLrSqMx6Dx9P2ZdYt8ViF9t1g6DW-GBzUncGTzqjgrIIA3dIHjxvrMODnPiaNW4fPIQTjlvtoq4HOm4P13UOPl5OHcprc3F1dl-ObBNKiCImiLJNEKCBMZyara1MTybgsBFDZ8EYw0BmHVKtaS5JqrlhBo0FTkErkIt1Dx6vchbNvg_Ghmrdexd-gN3bwFRUFJZTHkoierVDlrPfONNXCtXNwy4qS6mfrar11td46Oo7W4UM9N_qP_x03AicrIDqrVzu4Pv76b9w3Nv6NjQ</recordid><startdate>20150623</startdate><enddate>20150623</enddate><creator>Nam, Gyutae</creator><creator>Park, Joohyuk</creator><creator>Choi, Min</creator><creator>Oh, Pilgun</creator><creator>Park, Suhyeon</creator><creator>Kim, Min Gyu</creator><creator>Park, Noejung</creator><creator>Cho, Jaephil</creator><creator>Lee, Jang-Soo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150623</creationdate><title>Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery</title><author>Nam, Gyutae ; Park, Joohyuk ; Choi, Min ; Oh, Pilgun ; Park, Suhyeon ; Kim, Min Gyu ; Park, Noejung ; Cho, Jaephil ; Lee, Jang-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-c124706ca02d4e4bbeb0725796a17f5f62ad45a3dcbd703d5c291706d1a7c6863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Gyutae</creatorcontrib><creatorcontrib>Park, Joohyuk</creatorcontrib><creatorcontrib>Choi, Min</creatorcontrib><creatorcontrib>Oh, Pilgun</creatorcontrib><creatorcontrib>Park, Suhyeon</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Park, Noejung</creatorcontrib><creatorcontrib>Cho, Jaephil</creatorcontrib><creatorcontrib>Lee, Jang-Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Gyutae</au><au>Park, Joohyuk</au><au>Choi, Min</au><au>Oh, Pilgun</au><au>Park, Suhyeon</au><au>Kim, Min Gyu</au><au>Park, Noejung</au><au>Cho, Jaephil</au><au>Lee, Jang-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-06-23</date><risdate>2015</risdate><volume>9</volume><issue>6</issue><spage>6493</spage><epage>6501</epage><pages>6493-6501</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal–air batteries and fuel cells. Alloying has been studied to finely tune the catalysts’ electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH–, thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn–air battery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25967866</pmid><doi>10.1021/acsnano.5b02266</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-06, Vol.9 (6), p.6493-6501
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1691015470
source American Chemical Society Journals
title Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-Coated%20Core%E2%80%93Shell%20Fe%E2%80%93Cu%20Nanoparticles%20as%20Highly%20Active%20and%20Durable%20Electrocatalysts%20for%20a%20Zn%E2%80%93Air%20Battery&rft.jtitle=ACS%20nano&rft.au=Nam,%20Gyutae&rft.date=2015-06-23&rft.volume=9&rft.issue=6&rft.spage=6493&rft.epage=6501&rft.pages=6493-6501&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b02266&rft_dat=%3Cproquest_cross%3E1691015470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691015470&rft_id=info:pmid/25967866&rfr_iscdi=true