Modeling for control of rotating stall

An analytical model for control of rotating stall has been obtained from the basic fluid equations describing the process at inception. The model describes rotating stall as a traveling wave packet, sensed—in spatial components—via the Fourier decomposition of measurements obtained from a circumfere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 1994-09, Vol.30 (9), p.1357-1373
Hauptverfasser: Paduano, J.D., Valavani, L., Epstein, A.H., Greitzer, E.M., Guenette, G.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1373
container_issue 9
container_start_page 1357
container_title Automatica (Oxford)
container_volume 30
creator Paduano, J.D.
Valavani, L.
Epstein, A.H.
Greitzer, E.M.
Guenette, G.R.
description An analytical model for control of rotating stall has been obtained from the basic fluid equations describing the process at inception. The model describes rotating stall as a traveling wave packet, sensed—in spatial components—via the Fourier decomposition of measurements obtained from a circumferential array of evenly distributed sensors (hot wires) upstream of the compressor. A set of “wiggly” inlet guide vanes (IGVs) equally spaced around the compressor annulus constitute the “forced” part of the model. Control is effected by launching waves at appropriate magnitude and phase, synthesized by spatial Fourier synthesis from individual IGV deflections. The effect of the IGV motion on the unsteady fluid process was quantified via identification experiments carried out on a low speed, single-stage axial research compressor. These experiments served to validate the theoretical model and refine key parameters in it. Further validation of the model was provided by the successful implementation of a complex-valued proportional control law, using a combination of first and second harmonic feedback; this resulted in an 18% reduction of stalling mass flow, at essentially the same pressure rise.
doi_str_mv 10.1016/0005-1098(94)90001-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16910056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0005109894900019</els_id><sourcerecordid>147049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-796085ebd75bd8bade4b662ad06dfbad8095fb8d6b1e5c7f4d5f7f200c2364e13</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gYceZNFDNWnTNLkIsvgPVrzoOaTJRCLZZk26gt_e1F326Gl4w-_N8B5C5wRfE0zYDca4rQgW_FLQK5EVqcQBKgjvmqrmDTtExR45RicpfWZJCa8LNH8JBrwbPkobYqnDMMbgy2DLGEY1Tvs0Ku9P0ZFVPsHZbs7Q-8P92-KpWr4-Pi_ulpVuGB2rTjDMW-hN1_aG98oA7RmrlcHM2Cw5Fq3tuWE9gVZ3lprWdrbGWNfZD6SZofn27jqGrw2kUa5c0uC9GiBskiRMkJyEZZBuQR1DShGsXEe3UvFHEiynUuSUWE6JpaDyrxQpsu1id18lrbyNatAu7b20rjFnbcZutxjkrN8OokzawaDBuAh6lCa4___8ArIpdJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16910056</pqid></control><display><type>article</type><title>Modeling for control of rotating stall</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Paduano, J.D. ; Valavani, L. ; Epstein, A.H. ; Greitzer, E.M. ; Guenette, G.R.</creator><creatorcontrib>Paduano, J.D. ; Valavani, L. ; Epstein, A.H. ; Greitzer, E.M. ; Guenette, G.R.</creatorcontrib><description>An analytical model for control of rotating stall has been obtained from the basic fluid equations describing the process at inception. The model describes rotating stall as a traveling wave packet, sensed—in spatial components—via the Fourier decomposition of measurements obtained from a circumferential array of evenly distributed sensors (hot wires) upstream of the compressor. A set of “wiggly” inlet guide vanes (IGVs) equally spaced around the compressor annulus constitute the “forced” part of the model. Control is effected by launching waves at appropriate magnitude and phase, synthesized by spatial Fourier synthesis from individual IGV deflections. The effect of the IGV motion on the unsteady fluid process was quantified via identification experiments carried out on a low speed, single-stage axial research compressor. These experiments served to validate the theoretical model and refine key parameters in it. Further validation of the model was provided by the successful implementation of a complex-valued proportional control law, using a combination of first and second harmonic feedback; this resulted in an 18% reduction of stalling mass flow, at essentially the same pressure rise.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/0005-1098(94)90001-9</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Compressors ; control applications ; distributed parameter systems ; Exact sciences and technology ; Gas turbines ; identification ; least-squares estimation ; Mathematical models ; Mechanical engineering. Machine design ; modal control ; modeling ; parameter estimation ; Pump and compressors (turbocompressors, fans, etc.) ; Q1 ; stabilizers</subject><ispartof>Automatica (Oxford), 1994-09, Vol.30 (9), p.1357-1373</ispartof><rights>1994</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-796085ebd75bd8bade4b662ad06dfbad8095fb8d6b1e5c7f4d5f7f200c2364e13</citedby><cites>FETCH-LOGICAL-c364t-796085ebd75bd8bade4b662ad06dfbad8095fb8d6b1e5c7f4d5f7f200c2364e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0005-1098(94)90001-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4220865$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paduano, J.D.</creatorcontrib><creatorcontrib>Valavani, L.</creatorcontrib><creatorcontrib>Epstein, A.H.</creatorcontrib><creatorcontrib>Greitzer, E.M.</creatorcontrib><creatorcontrib>Guenette, G.R.</creatorcontrib><title>Modeling for control of rotating stall</title><title>Automatica (Oxford)</title><description>An analytical model for control of rotating stall has been obtained from the basic fluid equations describing the process at inception. The model describes rotating stall as a traveling wave packet, sensed—in spatial components—via the Fourier decomposition of measurements obtained from a circumferential array of evenly distributed sensors (hot wires) upstream of the compressor. A set of “wiggly” inlet guide vanes (IGVs) equally spaced around the compressor annulus constitute the “forced” part of the model. Control is effected by launching waves at appropriate magnitude and phase, synthesized by spatial Fourier synthesis from individual IGV deflections. The effect of the IGV motion on the unsteady fluid process was quantified via identification experiments carried out on a low speed, single-stage axial research compressor. These experiments served to validate the theoretical model and refine key parameters in it. Further validation of the model was provided by the successful implementation of a complex-valued proportional control law, using a combination of first and second harmonic feedback; this resulted in an 18% reduction of stalling mass flow, at essentially the same pressure rise.</description><subject>Applied sciences</subject><subject>Compressors</subject><subject>control applications</subject><subject>distributed parameter systems</subject><subject>Exact sciences and technology</subject><subject>Gas turbines</subject><subject>identification</subject><subject>least-squares estimation</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>modal control</subject><subject>modeling</subject><subject>parameter estimation</subject><subject>Pump and compressors (turbocompressors, fans, etc.)</subject><subject>Q1</subject><subject>stabilizers</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gYceZNFDNWnTNLkIsvgPVrzoOaTJRCLZZk26gt_e1F326Gl4w-_N8B5C5wRfE0zYDca4rQgW_FLQK5EVqcQBKgjvmqrmDTtExR45RicpfWZJCa8LNH8JBrwbPkobYqnDMMbgy2DLGEY1Tvs0Ku9P0ZFVPsHZbs7Q-8P92-KpWr4-Pi_ulpVuGB2rTjDMW-hN1_aG98oA7RmrlcHM2Cw5Fq3tuWE9gVZ3lprWdrbGWNfZD6SZofn27jqGrw2kUa5c0uC9GiBskiRMkJyEZZBuQR1DShGsXEe3UvFHEiynUuSUWE6JpaDyrxQpsu1id18lrbyNatAu7b20rjFnbcZutxjkrN8OokzawaDBuAh6lCa4___8ArIpdJE</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Paduano, J.D.</creator><creator>Valavani, L.</creator><creator>Epstein, A.H.</creator><creator>Greitzer, E.M.</creator><creator>Guenette, G.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940901</creationdate><title>Modeling for control of rotating stall</title><author>Paduano, J.D. ; Valavani, L. ; Epstein, A.H. ; Greitzer, E.M. ; Guenette, G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-796085ebd75bd8bade4b662ad06dfbad8095fb8d6b1e5c7f4d5f7f200c2364e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Compressors</topic><topic>control applications</topic><topic>distributed parameter systems</topic><topic>Exact sciences and technology</topic><topic>Gas turbines</topic><topic>identification</topic><topic>least-squares estimation</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>modal control</topic><topic>modeling</topic><topic>parameter estimation</topic><topic>Pump and compressors (turbocompressors, fans, etc.)</topic><topic>Q1</topic><topic>stabilizers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paduano, J.D.</creatorcontrib><creatorcontrib>Valavani, L.</creatorcontrib><creatorcontrib>Epstein, A.H.</creatorcontrib><creatorcontrib>Greitzer, E.M.</creatorcontrib><creatorcontrib>Guenette, G.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paduano, J.D.</au><au>Valavani, L.</au><au>Epstein, A.H.</au><au>Greitzer, E.M.</au><au>Guenette, G.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling for control of rotating stall</atitle><jtitle>Automatica (Oxford)</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>30</volume><issue>9</issue><spage>1357</spage><epage>1373</epage><pages>1357-1373</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>An analytical model for control of rotating stall has been obtained from the basic fluid equations describing the process at inception. The model describes rotating stall as a traveling wave packet, sensed—in spatial components—via the Fourier decomposition of measurements obtained from a circumferential array of evenly distributed sensors (hot wires) upstream of the compressor. A set of “wiggly” inlet guide vanes (IGVs) equally spaced around the compressor annulus constitute the “forced” part of the model. Control is effected by launching waves at appropriate magnitude and phase, synthesized by spatial Fourier synthesis from individual IGV deflections. The effect of the IGV motion on the unsteady fluid process was quantified via identification experiments carried out on a low speed, single-stage axial research compressor. These experiments served to validate the theoretical model and refine key parameters in it. Further validation of the model was provided by the successful implementation of a complex-valued proportional control law, using a combination of first and second harmonic feedback; this resulted in an 18% reduction of stalling mass flow, at essentially the same pressure rise.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0005-1098(94)90001-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 1994-09, Vol.30 (9), p.1357-1373
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_16910056
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Compressors
control applications
distributed parameter systems
Exact sciences and technology
Gas turbines
identification
least-squares estimation
Mathematical models
Mechanical engineering. Machine design
modal control
modeling
parameter estimation
Pump and compressors (turbocompressors, fans, etc.)
Q1
stabilizers
title Modeling for control of rotating stall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20for%20control%20of%20rotating%20stall&rft.jtitle=Automatica%20(Oxford)&rft.au=Paduano,%20J.D.&rft.date=1994-09-01&rft.volume=30&rft.issue=9&rft.spage=1357&rft.epage=1373&rft.pages=1357-1373&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/0005-1098(94)90001-9&rft_dat=%3Cproquest_cross%3E147049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16910056&rft_id=info:pmid/&rft_els_id=0005109894900019&rfr_iscdi=true