RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex
In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1994-04, Vol.91 (9), p.3784-3788 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3788 |
---|---|
container_issue | 9 |
container_start_page | 3784 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 91 |
creator | Altmann, Curtis R. Solow-Cordero, David E. Chamberlin, Michael J. |
description | In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein. |
doi_str_mv | 10.1073/pnas.91.9.3784 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16891579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2364535</jstor_id><sourcerecordid>2364535</sourcerecordid><originalsourceid>FETCH-LOGICAL-j261t-f339be8932e38e2af637c7fd8ddb06d464317b51e516b5f399520616ab2dcfe63</originalsourceid><addsrcrecordid>eNpdjz1v2zAQhomiAeomWTt1IIqgmxx-iRJHx3Y-gCApinQWTtLJpkGTKikHTf5Y9v6yynWQIdMBd8_73B0hXzibclbI895Dmho-NVNZlOoDmXBmeKaVYR_JhDFRZKUS6hP5nNKGMWbykk1I_Hk3o3OH8AgrpOBbOl-D9XTpgl_BYIOn9RNdpmaN0TZrC7QJztLF3SxbYI--RT_QveNHcE9bjJCQjnGgF9ZDHJP-eWz_ffm_Jmx7h39OyFEHLuHpaz0mvy6XD_Pr7Pb-6mY-u802QvMh66Q0NZZGCpQlCui0LJqia8u2rZlulVaSF3XOMee6zjtpTC6Y5hpq0TYdanlMvh-8fQy_d5iGamtTg86Bx7BLFdel4XlhRvDbO3ATdtGPt1WCcamV0Hvb2SsEqQHXRfCNTVUf7Xb8s1JCGq722NcDtklDiG9jMVpymct_efd_ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201364266</pqid></control><display><type>article</type><title>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</title><source>PubMed Central Free</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Altmann, Curtis R. ; Solow-Cordero, David E. ; Chamberlin, Michael J.</creator><creatorcontrib>Altmann, Curtis R. ; Solow-Cordero, David E. ; Chamberlin, Michael J.</creatorcontrib><description>In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.9.3784</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Active sites ; Analytical, structural and metabolic biochemistry ; Bacteria ; Binding sites ; Biochemistry ; Biological and medical sciences ; Buffer storage ; Deoxyribonucleic acid ; DNA ; Enzymes ; Enzymes and enzyme inhibitors ; Escherichia coli ; Fundamental and applied biological sciences. Psychology ; Hybridity ; Nucleic acids ; Nucleotides ; Ribonucleic acid ; RNA ; Transferases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-04, Vol.91 (9), p.3784-3788</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 26, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2364535$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2364535$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4239146$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Altmann, Curtis R.</creatorcontrib><creatorcontrib>Solow-Cordero, David E.</creatorcontrib><creatorcontrib>Chamberlin, Michael J.</creatorcontrib><title>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.</description><subject>Active sites</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Buffer storage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hybridity</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transferases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpdjz1v2zAQhomiAeomWTt1IIqgmxx-iRJHx3Y-gCApinQWTtLJpkGTKikHTf5Y9v6yynWQIdMBd8_73B0hXzibclbI895Dmho-NVNZlOoDmXBmeKaVYR_JhDFRZKUS6hP5nNKGMWbykk1I_Hk3o3OH8AgrpOBbOl-D9XTpgl_BYIOn9RNdpmaN0TZrC7QJztLF3SxbYI--RT_QveNHcE9bjJCQjnGgF9ZDHJP-eWz_ffm_Jmx7h39OyFEHLuHpaz0mvy6XD_Pr7Pb-6mY-u802QvMh66Q0NZZGCpQlCui0LJqia8u2rZlulVaSF3XOMee6zjtpTC6Y5hpq0TYdanlMvh-8fQy_d5iGamtTg86Bx7BLFdel4XlhRvDbO3ATdtGPt1WCcamV0Hvb2SsEqQHXRfCNTVUf7Xb8s1JCGq722NcDtklDiG9jMVpymct_efd_ZQ</recordid><startdate>19940426</startdate><enddate>19940426</enddate><creator>Altmann, Curtis R.</creator><creator>Solow-Cordero, David E.</creator><creator>Chamberlin, Michael J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19940426</creationdate><title>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</title><author>Altmann, Curtis R. ; Solow-Cordero, David E. ; Chamberlin, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j261t-f339be8932e38e2af637c7fd8ddb06d464317b51e516b5f399520616ab2dcfe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Active sites</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Buffer storage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hybridity</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altmann, Curtis R.</creatorcontrib><creatorcontrib>Solow-Cordero, David E.</creatorcontrib><creatorcontrib>Chamberlin, Michael J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altmann, Curtis R.</au><au>Solow-Cordero, David E.</au><au>Chamberlin, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>1994-04-26</date><risdate>1994</risdate><volume>91</volume><issue>9</issue><spage>3784</spage><epage>3788</epage><pages>3784-3788</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><doi>10.1073/pnas.91.9.3784</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1994-04, Vol.91 (9), p.3784-3788 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_16891579 |
source | PubMed Central Free; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Active sites Analytical, structural and metabolic biochemistry Bacteria Binding sites Biochemistry Biological and medical sciences Buffer storage Deoxyribonucleic acid DNA Enzymes Enzymes and enzyme inhibitors Escherichia coli Fundamental and applied biological sciences. Psychology Hybridity Nucleic acids Nucleotides Ribonucleic acid RNA Transferases |
title | RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20Cleavage%20and%20Chain%20Elongation%20by%20Escherichia%20coli%20DNA-Dependent%20RNA%20Polymerase%20in%20a%20Binary%20Enzyme%C2%B7RNA%20Complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Altmann,%20Curtis%20R.&rft.date=1994-04-26&rft.volume=91&rft.issue=9&rft.spage=3784&rft.epage=3788&rft.pages=3784-3788&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.91.9.3784&rft_dat=%3Cjstor_proqu%3E2364535%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201364266&rft_id=info:pmid/&rft_jstor_id=2364535&rfr_iscdi=true |