RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex

In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1994-04, Vol.91 (9), p.3784-3788
Hauptverfasser: Altmann, Curtis R., Solow-Cordero, David E., Chamberlin, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3788
container_issue 9
container_start_page 3784
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 91
creator Altmann, Curtis R.
Solow-Cordero, David E.
Chamberlin, Michael J.
description In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.
doi_str_mv 10.1073/pnas.91.9.3784
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16891579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2364535</jstor_id><sourcerecordid>2364535</sourcerecordid><originalsourceid>FETCH-LOGICAL-j261t-f339be8932e38e2af637c7fd8ddb06d464317b51e516b5f399520616ab2dcfe63</originalsourceid><addsrcrecordid>eNpdjz1v2zAQhomiAeomWTt1IIqgmxx-iRJHx3Y-gCApinQWTtLJpkGTKikHTf5Y9v6yynWQIdMBd8_73B0hXzibclbI895Dmho-NVNZlOoDmXBmeKaVYR_JhDFRZKUS6hP5nNKGMWbykk1I_Hk3o3OH8AgrpOBbOl-D9XTpgl_BYIOn9RNdpmaN0TZrC7QJztLF3SxbYI--RT_QveNHcE9bjJCQjnGgF9ZDHJP-eWz_ffm_Jmx7h39OyFEHLuHpaz0mvy6XD_Pr7Pb-6mY-u802QvMh66Q0NZZGCpQlCui0LJqia8u2rZlulVaSF3XOMee6zjtpTC6Y5hpq0TYdanlMvh-8fQy_d5iGamtTg86Bx7BLFdel4XlhRvDbO3ATdtGPt1WCcamV0Hvb2SsEqQHXRfCNTVUf7Xb8s1JCGq722NcDtklDiG9jMVpymct_efd_ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201364266</pqid></control><display><type>article</type><title>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</title><source>PubMed Central Free</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Altmann, Curtis R. ; Solow-Cordero, David E. ; Chamberlin, Michael J.</creator><creatorcontrib>Altmann, Curtis R. ; Solow-Cordero, David E. ; Chamberlin, Michael J.</creatorcontrib><description>In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.9.3784</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Active sites ; Analytical, structural and metabolic biochemistry ; Bacteria ; Binding sites ; Biochemistry ; Biological and medical sciences ; Buffer storage ; Deoxyribonucleic acid ; DNA ; Enzymes ; Enzymes and enzyme inhibitors ; Escherichia coli ; Fundamental and applied biological sciences. Psychology ; Hybridity ; Nucleic acids ; Nucleotides ; Ribonucleic acid ; RNA ; Transferases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-04, Vol.91 (9), p.3784-3788</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 26, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2364535$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2364535$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4239146$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Altmann, Curtis R.</creatorcontrib><creatorcontrib>Solow-Cordero, David E.</creatorcontrib><creatorcontrib>Chamberlin, Michael J.</creatorcontrib><title>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.</description><subject>Active sites</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Buffer storage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hybridity</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transferases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpdjz1v2zAQhomiAeomWTt1IIqgmxx-iRJHx3Y-gCApinQWTtLJpkGTKikHTf5Y9v6yynWQIdMBd8_73B0hXzibclbI895Dmho-NVNZlOoDmXBmeKaVYR_JhDFRZKUS6hP5nNKGMWbykk1I_Hk3o3OH8AgrpOBbOl-D9XTpgl_BYIOn9RNdpmaN0TZrC7QJztLF3SxbYI--RT_QveNHcE9bjJCQjnGgF9ZDHJP-eWz_ffm_Jmx7h39OyFEHLuHpaz0mvy6XD_Pr7Pb-6mY-u802QvMh66Q0NZZGCpQlCui0LJqia8u2rZlulVaSF3XOMee6zjtpTC6Y5hpq0TYdanlMvh-8fQy_d5iGamtTg86Bx7BLFdel4XlhRvDbO3ATdtGPt1WCcamV0Hvb2SsEqQHXRfCNTVUf7Xb8s1JCGq722NcDtklDiG9jMVpymct_efd_ZQ</recordid><startdate>19940426</startdate><enddate>19940426</enddate><creator>Altmann, Curtis R.</creator><creator>Solow-Cordero, David E.</creator><creator>Chamberlin, Michael J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19940426</creationdate><title>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</title><author>Altmann, Curtis R. ; Solow-Cordero, David E. ; Chamberlin, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j261t-f339be8932e38e2af637c7fd8ddb06d464317b51e516b5f399520616ab2dcfe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Active sites</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Buffer storage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hybridity</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altmann, Curtis R.</creatorcontrib><creatorcontrib>Solow-Cordero, David E.</creatorcontrib><creatorcontrib>Chamberlin, Michael J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altmann, Curtis R.</au><au>Solow-Cordero, David E.</au><au>Chamberlin, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>1994-04-26</date><risdate>1994</risdate><volume>91</volume><issue>9</issue><spage>3784</spage><epage>3788</epage><pages>3784-3788</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the σ factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA·RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><doi>10.1073/pnas.91.9.3784</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1994-04, Vol.91 (9), p.3784-3788
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_16891579
source PubMed Central Free; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
Analytical, structural and metabolic biochemistry
Bacteria
Binding sites
Biochemistry
Biological and medical sciences
Buffer storage
Deoxyribonucleic acid
DNA
Enzymes
Enzymes and enzyme inhibitors
Escherichia coli
Fundamental and applied biological sciences. Psychology
Hybridity
Nucleic acids
Nucleotides
Ribonucleic acid
RNA
Transferases
title RNA Cleavage and Chain Elongation by Escherichia coli DNA-Dependent RNA Polymerase in a Binary Enzyme·RNA Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20Cleavage%20and%20Chain%20Elongation%20by%20Escherichia%20coli%20DNA-Dependent%20RNA%20Polymerase%20in%20a%20Binary%20Enzyme%C2%B7RNA%20Complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Altmann,%20Curtis%20R.&rft.date=1994-04-26&rft.volume=91&rft.issue=9&rft.spage=3784&rft.epage=3788&rft.pages=3784-3788&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.91.9.3784&rft_dat=%3Cjstor_proqu%3E2364535%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201364266&rft_id=info:pmid/&rft_jstor_id=2364535&rfr_iscdi=true