Structural and Electrophysiological Analysis of Annexin V Mutants: Mutagenesis of Human Annexin V, an in Vitro Voltage-gated Calcium Channel, Provides Information about the Structural Features of the Ion Pathway, the Voltage Sensor and the Ion Selectivity Filter

Annexin V binds to phospholipids in a calcium-dependent manner and exhibits calcium channel activity in vitro. We prepared a variety of mutants yielding information about the structure-function relationship of the ion channel activity. All mutants were characterized by X-ray crystallography, electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1994-04, Vol.237 (4), p.479-499
Hauptverfasser: Burger, Alexander, Voges, Dieter, Demange, Pascal, Perez, Catalina Ruiz, Huber, Robert, Berendes, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 4
container_start_page 479
container_title Journal of molecular biology
container_volume 237
creator Burger, Alexander
Voges, Dieter
Demange, Pascal
Perez, Catalina Ruiz
Huber, Robert
Berendes, Robert
description Annexin V binds to phospholipids in a calcium-dependent manner and exhibits calcium channel activity in vitro. We prepared a variety of mutants yielding information about the structure-function relationship of the ion channel activity. All mutants were characterized by X-ray crystallography, electron microscopy and electrophysiological measurements. Their structures are insignificantly changed whereas their electrophysiological properties are drastically different. Glu95, located in the central hydrophilic pore of the molecule, is crucial for the ion selectivity filter as its exchange leads to reduced calcium and increased sodium conductance. The removal of Glu17, located on the protein surface and far from the ion conduction pathway, leads to the appearance of a second conductance level of 9 pS in addition to the conductance level of about 30 pS in the wild-type molecule. This was also the case for Glu78, which is part of a weak calcium binding site. The exchange of Glu17 and Glu78 produced a mutant retaining only the smaller conductance level. We conclude that these two residues influence the angle between the two halves of the molecule, which determines the diameter of the ion conduction pathway, thereby leading to the occurrence of a second conductance level.
doi_str_mv 10.1006/jmbi.1994.1249
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_16882043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283684712496</els_id><sourcerecordid>16882043</sourcerecordid><originalsourceid>FETCH-LOGICAL-e218t-9ff0606ce7c5d4cacad557812bb20eb358f77aff74334982234aecddc8fbf01c3</originalsourceid><addsrcrecordid>eNpNks-PEyEUx9Goa61evZlw8tSpwPxivG2ardtkjZtU90oY5k3LhoEKTLX_vUy3Rk984fvhPV74IvSekiUlpPr0OLR6SZumWFJWNM_RjBLeZLzK-Qs0I4SxjPG8eo3ehPBICCnzgl-hK05LWpN69uzVNvpRxdFLg6Xt8I0BFb077E9BO-N2WiXj2kqT9gG7PmkLv7XFD_jrGKWN4fNZ7MDChbgdB2n_cYtUF09Cp7r4wZkJznYyQodX0ig9Dni1lwk3C3zv3VF3EPDG9s4PMmpnsWzdGHHcA_7vsWuQScC542RtEngv4_6XPC3OB5dOeAs2OH8e7i-3hWlKfdTxhNfaRPBv0ctemgDvLusc_VjffF_dZnffvmxW13cZMMpj1vQ9qUiloFZlVyipZFeWNaesbRmBNi95X9ey7-siz4uGM5YXElTXKd63PaEqn6OPT3UP3v0cIUQx6KDAGGnBjUHQinNG0u05-nABx3aAThy8HqQ_icvHJZ8_-ZBee9TgRVAarIJO-zSb6JwWlIgpImKKiJgiIqaI5H8A7ZqziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16882043</pqid></control><display><type>article</type><title>Structural and Electrophysiological Analysis of Annexin V Mutants: Mutagenesis of Human Annexin V, an in Vitro Voltage-gated Calcium Channel, Provides Information about the Structural Features of the Ion Pathway, the Voltage Sensor and the Ion Selectivity Filter</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Burger, Alexander ; Voges, Dieter ; Demange, Pascal ; Perez, Catalina Ruiz ; Huber, Robert ; Berendes, Robert</creator><creatorcontrib>Burger, Alexander ; Voges, Dieter ; Demange, Pascal ; Perez, Catalina Ruiz ; Huber, Robert ; Berendes, Robert</creatorcontrib><description>Annexin V binds to phospholipids in a calcium-dependent manner and exhibits calcium channel activity in vitro. We prepared a variety of mutants yielding information about the structure-function relationship of the ion channel activity. All mutants were characterized by X-ray crystallography, electron microscopy and electrophysiological measurements. Their structures are insignificantly changed whereas their electrophysiological properties are drastically different. Glu95, located in the central hydrophilic pore of the molecule, is crucial for the ion selectivity filter as its exchange leads to reduced calcium and increased sodium conductance. The removal of Glu17, located on the protein surface and far from the ion conduction pathway, leads to the appearance of a second conductance level of 9 pS in addition to the conductance level of about 30 pS in the wild-type molecule. This was also the case for Glu78, which is part of a weak calcium binding site. The exchange of Glu17 and Glu78 produced a mutant retaining only the smaller conductance level. We conclude that these two residues influence the angle between the two halves of the molecule, which determines the diameter of the ion conduction pathway, thereby leading to the occurrence of a second conductance level.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.1994.1249</identifier><identifier>PMID: 8151707</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; annexin ; Annexin A5 - chemistry ; Annexin A5 - physiology ; Annexin A5 - ultrastructure ; Base Sequence ; Calcium - metabolism ; Calcium Channels - biosynthesis ; Calcium Channels - chemistry ; Calcium Channels - physiology ; Cloning, Molecular ; Crystallography, X-Ray - methods ; electron microscopy ; electrophysiology ; Electrophysiology - methods ; Humans ; Lipid Bilayers ; Membrane Potentials ; Microscopy, Electron ; Models, Molecular ; Models, Structural ; Molecular Sequence Data ; mutagenesis ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Protein Structure, Secondary ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Recombinant Proteins - ultrastructure ; Restriction Mapping ; Sodium - metabolism ; X-ray crystallography</subject><ispartof>Journal of molecular biology, 1994-04, Vol.237 (4), p.479-499</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.1994.1249$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8151707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burger, Alexander</creatorcontrib><creatorcontrib>Voges, Dieter</creatorcontrib><creatorcontrib>Demange, Pascal</creatorcontrib><creatorcontrib>Perez, Catalina Ruiz</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>Berendes, Robert</creatorcontrib><title>Structural and Electrophysiological Analysis of Annexin V Mutants: Mutagenesis of Human Annexin V, an in Vitro Voltage-gated Calcium Channel, Provides Information about the Structural Features of the Ion Pathway, the Voltage Sensor and the Ion Selectivity Filter</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Annexin V binds to phospholipids in a calcium-dependent manner and exhibits calcium channel activity in vitro. We prepared a variety of mutants yielding information about the structure-function relationship of the ion channel activity. All mutants were characterized by X-ray crystallography, electron microscopy and electrophysiological measurements. Their structures are insignificantly changed whereas their electrophysiological properties are drastically different. Glu95, located in the central hydrophilic pore of the molecule, is crucial for the ion selectivity filter as its exchange leads to reduced calcium and increased sodium conductance. The removal of Glu17, located on the protein surface and far from the ion conduction pathway, leads to the appearance of a second conductance level of 9 pS in addition to the conductance level of about 30 pS in the wild-type molecule. This was also the case for Glu78, which is part of a weak calcium binding site. The exchange of Glu17 and Glu78 produced a mutant retaining only the smaller conductance level. We conclude that these two residues influence the angle between the two halves of the molecule, which determines the diameter of the ion conduction pathway, thereby leading to the occurrence of a second conductance level.</description><subject>Amino Acid Sequence</subject><subject>annexin</subject><subject>Annexin A5 - chemistry</subject><subject>Annexin A5 - physiology</subject><subject>Annexin A5 - ultrastructure</subject><subject>Base Sequence</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - biosynthesis</subject><subject>Calcium Channels - chemistry</subject><subject>Calcium Channels - physiology</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray - methods</subject><subject>electron microscopy</subject><subject>electrophysiology</subject><subject>Electrophysiology - methods</subject><subject>Humans</subject><subject>Lipid Bilayers</subject><subject>Membrane Potentials</subject><subject>Microscopy, Electron</subject><subject>Models, Molecular</subject><subject>Models, Structural</subject><subject>Molecular Sequence Data</subject><subject>mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oligodeoxyribonucleotides</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombinant Proteins - ultrastructure</subject><subject>Restriction Mapping</subject><subject>Sodium - metabolism</subject><subject>X-ray crystallography</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNks-PEyEUx9Goa61evZlw8tSpwPxivG2ardtkjZtU90oY5k3LhoEKTLX_vUy3Rk984fvhPV74IvSekiUlpPr0OLR6SZumWFJWNM_RjBLeZLzK-Qs0I4SxjPG8eo3ehPBICCnzgl-hK05LWpN69uzVNvpRxdFLg6Xt8I0BFb077E9BO-N2WiXj2kqT9gG7PmkLv7XFD_jrGKWN4fNZ7MDChbgdB2n_cYtUF09Cp7r4wZkJznYyQodX0ig9Dni1lwk3C3zv3VF3EPDG9s4PMmpnsWzdGHHcA_7vsWuQScC542RtEngv4_6XPC3OB5dOeAs2OH8e7i-3hWlKfdTxhNfaRPBv0ctemgDvLusc_VjffF_dZnffvmxW13cZMMpj1vQ9qUiloFZlVyipZFeWNaesbRmBNi95X9ey7-siz4uGM5YXElTXKd63PaEqn6OPT3UP3v0cIUQx6KDAGGnBjUHQinNG0u05-nABx3aAThy8HqQ_icvHJZ8_-ZBee9TgRVAarIJO-zSb6JwWlIgpImKKiJgiIqaI5H8A7ZqziA</recordid><startdate>19940408</startdate><enddate>19940408</enddate><creator>Burger, Alexander</creator><creator>Voges, Dieter</creator><creator>Demange, Pascal</creator><creator>Perez, Catalina Ruiz</creator><creator>Huber, Robert</creator><creator>Berendes, Robert</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7TM</scope></search><sort><creationdate>19940408</creationdate><title>Structural and Electrophysiological Analysis of Annexin V Mutants: Mutagenesis of Human Annexin V, an in Vitro Voltage-gated Calcium Channel, Provides Information about the Structural Features of the Ion Pathway, the Voltage Sensor and the Ion Selectivity Filter</title><author>Burger, Alexander ; Voges, Dieter ; Demange, Pascal ; Perez, Catalina Ruiz ; Huber, Robert ; Berendes, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e218t-9ff0606ce7c5d4cacad557812bb20eb358f77aff74334982234aecddc8fbf01c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Amino Acid Sequence</topic><topic>annexin</topic><topic>Annexin A5 - chemistry</topic><topic>Annexin A5 - physiology</topic><topic>Annexin A5 - ultrastructure</topic><topic>Base Sequence</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - biosynthesis</topic><topic>Calcium Channels - chemistry</topic><topic>Calcium Channels - physiology</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray - methods</topic><topic>electron microscopy</topic><topic>electrophysiology</topic><topic>Electrophysiology - methods</topic><topic>Humans</topic><topic>Lipid Bilayers</topic><topic>Membrane Potentials</topic><topic>Microscopy, Electron</topic><topic>Models, Molecular</topic><topic>Models, Structural</topic><topic>Molecular Sequence Data</topic><topic>mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oligodeoxyribonucleotides</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombinant Proteins - ultrastructure</topic><topic>Restriction Mapping</topic><topic>Sodium - metabolism</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burger, Alexander</creatorcontrib><creatorcontrib>Voges, Dieter</creatorcontrib><creatorcontrib>Demange, Pascal</creatorcontrib><creatorcontrib>Perez, Catalina Ruiz</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>Berendes, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burger, Alexander</au><au>Voges, Dieter</au><au>Demange, Pascal</au><au>Perez, Catalina Ruiz</au><au>Huber, Robert</au><au>Berendes, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Electrophysiological Analysis of Annexin V Mutants: Mutagenesis of Human Annexin V, an in Vitro Voltage-gated Calcium Channel, Provides Information about the Structural Features of the Ion Pathway, the Voltage Sensor and the Ion Selectivity Filter</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1994-04-08</date><risdate>1994</risdate><volume>237</volume><issue>4</issue><spage>479</spage><epage>499</epage><pages>479-499</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Annexin V binds to phospholipids in a calcium-dependent manner and exhibits calcium channel activity in vitro. We prepared a variety of mutants yielding information about the structure-function relationship of the ion channel activity. All mutants were characterized by X-ray crystallography, electron microscopy and electrophysiological measurements. Their structures are insignificantly changed whereas their electrophysiological properties are drastically different. Glu95, located in the central hydrophilic pore of the molecule, is crucial for the ion selectivity filter as its exchange leads to reduced calcium and increased sodium conductance. The removal of Glu17, located on the protein surface and far from the ion conduction pathway, leads to the appearance of a second conductance level of 9 pS in addition to the conductance level of about 30 pS in the wild-type molecule. This was also the case for Glu78, which is part of a weak calcium binding site. The exchange of Glu17 and Glu78 produced a mutant retaining only the smaller conductance level. We conclude that these two residues influence the angle between the two halves of the molecule, which determines the diameter of the ion conduction pathway, thereby leading to the occurrence of a second conductance level.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>8151707</pmid><doi>10.1006/jmbi.1994.1249</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 1994-04, Vol.237 (4), p.479-499
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_16882043
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Amino Acid Sequence
annexin
Annexin A5 - chemistry
Annexin A5 - physiology
Annexin A5 - ultrastructure
Base Sequence
Calcium - metabolism
Calcium Channels - biosynthesis
Calcium Channels - chemistry
Calcium Channels - physiology
Cloning, Molecular
Crystallography, X-Ray - methods
electron microscopy
electrophysiology
Electrophysiology - methods
Humans
Lipid Bilayers
Membrane Potentials
Microscopy, Electron
Models, Molecular
Models, Structural
Molecular Sequence Data
mutagenesis
Mutagenesis, Site-Directed
Oligodeoxyribonucleotides
Protein Structure, Secondary
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Recombinant Proteins - ultrastructure
Restriction Mapping
Sodium - metabolism
X-ray crystallography
title Structural and Electrophysiological Analysis of Annexin V Mutants: Mutagenesis of Human Annexin V, an in Vitro Voltage-gated Calcium Channel, Provides Information about the Structural Features of the Ion Pathway, the Voltage Sensor and the Ion Selectivity Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Electrophysiological%20Analysis%20of%20Annexin%20V%20Mutants:%20Mutagenesis%20of%20Human%20Annexin%20V,%20an%20in%20Vitro%20Voltage-gated%20Calcium%20Channel,%20Provides%20Information%20about%20the%20Structural%20Features%20of%20the%20Ion%20Pathway,%20the%20Voltage%20Sensor%20and%20the%20Ion%20Selectivity%20Filter&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Burger,%20Alexander&rft.date=1994-04-08&rft.volume=237&rft.issue=4&rft.spage=479&rft.epage=499&rft.pages=479-499&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.1994.1249&rft_dat=%3Cproquest_pubme%3E16882043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16882043&rft_id=info:pmid/8151707&rft_els_id=S0022283684712496&rfr_iscdi=true