Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils

The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2015-07, Vol.99 (13), p.5709-5718
Hauptverfasser: Shen, Li-dong, Wu, Hong-sheng, Gao, Zhi-qiu, Xu, Xiang-hua, Chen, Tie-xi, Liu, Shuai, Cheng, Hai-xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5718
container_issue 13
container_start_page 5709
container_title Applied microbiology and biotechnology
container_volume 99
creator Shen, Li-dong
Wu, Hong-sheng
Gao, Zhi-qiu
Xu, Xiang-hua
Chen, Tie-xi
Liu, Shuai
Cheng, Hai-xiang
description The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N₂ g⁻¹ dry soil day⁻¹, and the anammox accounted for 5.9–20.5 % of total soil dinitrogen gas production. It is estimated that a total loss of 7.1–78.2 g N m⁻² year⁻¹ could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10⁵ to 3.0 × 10⁶ copies g⁻¹ dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.
doi_str_mv 10.1007/s00253-015-6454-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687998436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435968065</galeid><sourcerecordid>A435968065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-db9c7c50e2e0698f57cbbf5a5ab8def8db6691b64a9a795910d66e6462ad34503</originalsourceid><addsrcrecordid>eNp9ktFr1TAUxoMo7m76B_iiBV_0ofMkTdLmcQydg8HAeZ9Dkp6WjLa5Ju2Y--vNpdNxRSQPIef8vo9z-ELIGwqnFKD-lACYqEqgopRc8PLhGdlQXrESJOXPyQZoLcpaqOaIHKd0C0BZI-VLcsSEVFDRakO2184tMeLksDBTW_hxF-Js9s_Q5YrBGKx3hRnHMPllLMO9b33yU19Y42aM3hR-Ku6wx9nYAYsU_JBekRedGRK-frxPyPbL5-_nX8ur64vL87Or0kngc9la5WonABmCVE0namdtJ4wwtmmxa1orpaJWcqNMrYSi0EqJkktm2ooLqE7Ih9V3F8OPBdOsR58cDoOZMCxJU9nUSjW8khl9_xd6G5Y45ek0E5RKAYKxJ6o3A2o_dWGOxu1N9RmvhJINSJGp039Q-bQ4ehcm7HyuHwg-HggyM-P93JslJX158-2QpSvrYkgpYqd30Y8m_tQU9D52vcauc-x6H7t-yJq3j8stdsT2j-J3zhlgK5Bya-oxPm3_P9d3q6gzQZs--qS3NwyohPyTGlaz6hc2wL8v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511650522</pqid></control><display><type>article</type><title>Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Li-dong ; Wu, Hong-sheng ; Gao, Zhi-qiu ; Xu, Xiang-hua ; Chen, Tie-xi ; Liu, Shuai ; Cheng, Hai-xiang</creator><creatorcontrib>Shen, Li-dong ; Wu, Hong-sheng ; Gao, Zhi-qiu ; Xu, Xiang-hua ; Chen, Tie-xi ; Liu, Shuai ; Cheng, Hai-xiang</creatorcontrib><description>The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N₂ g⁻¹ dry soil day⁻¹, and the anammox accounted for 5.9–20.5 % of total soil dinitrogen gas production. It is estimated that a total loss of 7.1–78.2 g N m⁻² year⁻¹ could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10⁵ to 3.0 × 10⁶ copies g⁻¹ dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6454-z</identifier><identifier>PMID: 25690313</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abundance ; Ammonia-oxidizing bacteria ; Ammonium ; Ammonium Compounds - metabolism ; anaerobic ammonium oxidation ; Anaerobiosis ; Analysis ; Bacteria ; Bacteria, Anaerobic - classification ; Bacteria, Anaerobic - growth &amp; development ; Bacteria, Anaerobic - metabolism ; Biomedical and Life Sciences ; Biotechnology ; Candidatus Anammoxoglobus ; Candidatus Brocadia ; Candidatus Jettenia ; Candidatus Kuenenia ; China ; Cluster Analysis ; Correlation analysis ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Environmental Biotechnology ; Gas production ; Isotope Labeling ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Molecular Sequence Data ; nitrifying bacteria ; Nitrogen ; Nitrogen (Chemical element) ; Nitrogen - metabolism ; Oil and gas production ; Oxidation ; Oxidation-Reduction ; paddies ; Phylogeny ; Physiological aspects ; quantitative polymerase chain reaction ; Real-Time Polymerase Chain Reaction ; Rice fields ; RNA, Ribosomal, 16S - genetics ; Sequence Analysis, DNA ; soil ; Soil analysis ; Soil bacteria ; Soil investigations ; Soil Microbiology ; Soil microorganisms ; Soils ; Stable isotopes ; Vegetables ; Vegetables - growth &amp; development</subject><ispartof>Applied microbiology and biotechnology, 2015-07, Vol.99 (13), p.5709-5718</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-db9c7c50e2e0698f57cbbf5a5ab8def8db6691b64a9a795910d66e6462ad34503</citedby><cites>FETCH-LOGICAL-c604t-db9c7c50e2e0698f57cbbf5a5ab8def8db6691b64a9a795910d66e6462ad34503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-6454-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-6454-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25690313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Li-dong</creatorcontrib><creatorcontrib>Wu, Hong-sheng</creatorcontrib><creatorcontrib>Gao, Zhi-qiu</creatorcontrib><creatorcontrib>Xu, Xiang-hua</creatorcontrib><creatorcontrib>Chen, Tie-xi</creatorcontrib><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Cheng, Hai-xiang</creatorcontrib><title>Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N₂ g⁻¹ dry soil day⁻¹, and the anammox accounted for 5.9–20.5 % of total soil dinitrogen gas production. It is estimated that a total loss of 7.1–78.2 g N m⁻² year⁻¹ could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10⁵ to 3.0 × 10⁶ copies g⁻¹ dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.</description><subject>Abundance</subject><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>anaerobic ammonium oxidation</subject><subject>Anaerobiosis</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacteria, Anaerobic - classification</subject><subject>Bacteria, Anaerobic - growth &amp; development</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Candidatus Anammoxoglobus</subject><subject>Candidatus Brocadia</subject><subject>Candidatus Jettenia</subject><subject>Candidatus Kuenenia</subject><subject>China</subject><subject>Cluster Analysis</subject><subject>Correlation analysis</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Environmental Biotechnology</subject><subject>Gas production</subject><subject>Isotope Labeling</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>nitrifying bacteria</subject><subject>Nitrogen</subject><subject>Nitrogen (Chemical element)</subject><subject>Nitrogen - metabolism</subject><subject>Oil and gas production</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>paddies</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>quantitative polymerase chain reaction</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Rice fields</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>soil</subject><subject>Soil analysis</subject><subject>Soil bacteria</subject><subject>Soil investigations</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Stable isotopes</subject><subject>Vegetables</subject><subject>Vegetables - growth &amp; development</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ktFr1TAUxoMo7m76B_iiBV_0ofMkTdLmcQydg8HAeZ9Dkp6WjLa5Ju2Y--vNpdNxRSQPIef8vo9z-ELIGwqnFKD-lACYqEqgopRc8PLhGdlQXrESJOXPyQZoLcpaqOaIHKd0C0BZI-VLcsSEVFDRakO2184tMeLksDBTW_hxF-Js9s_Q5YrBGKx3hRnHMPllLMO9b33yU19Y42aM3hR-Ku6wx9nYAYsU_JBekRedGRK-frxPyPbL5-_nX8ur64vL87Or0kngc9la5WonABmCVE0namdtJ4wwtmmxa1orpaJWcqNMrYSi0EqJkktm2ooLqE7Ih9V3F8OPBdOsR58cDoOZMCxJU9nUSjW8khl9_xd6G5Y45ek0E5RKAYKxJ6o3A2o_dWGOxu1N9RmvhJINSJGp039Q-bQ4ehcm7HyuHwg-HggyM-P93JslJX158-2QpSvrYkgpYqd30Y8m_tQU9D52vcauc-x6H7t-yJq3j8stdsT2j-J3zhlgK5Bya-oxPm3_P9d3q6gzQZs--qS3NwyohPyTGlaz6hc2wL8v</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Shen, Li-dong</creator><creator>Wu, Hong-sheng</creator><creator>Gao, Zhi-qiu</creator><creator>Xu, Xiang-hua</creator><creator>Chen, Tie-xi</creator><creator>Liu, Shuai</creator><creator>Cheng, Hai-xiang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils</title><author>Shen, Li-dong ; Wu, Hong-sheng ; Gao, Zhi-qiu ; Xu, Xiang-hua ; Chen, Tie-xi ; Liu, Shuai ; Cheng, Hai-xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-db9c7c50e2e0698f57cbbf5a5ab8def8db6691b64a9a795910d66e6462ad34503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abundance</topic><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>anaerobic ammonium oxidation</topic><topic>Anaerobiosis</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacteria, Anaerobic - classification</topic><topic>Bacteria, Anaerobic - growth &amp; development</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Candidatus Anammoxoglobus</topic><topic>Candidatus Brocadia</topic><topic>Candidatus Jettenia</topic><topic>Candidatus Kuenenia</topic><topic>China</topic><topic>Cluster Analysis</topic><topic>Correlation analysis</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Environmental Biotechnology</topic><topic>Gas production</topic><topic>Isotope Labeling</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>nitrifying bacteria</topic><topic>Nitrogen</topic><topic>Nitrogen (Chemical element)</topic><topic>Nitrogen - metabolism</topic><topic>Oil and gas production</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>paddies</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>quantitative polymerase chain reaction</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Rice fields</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>soil</topic><topic>Soil analysis</topic><topic>Soil bacteria</topic><topic>Soil investigations</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Stable isotopes</topic><topic>Vegetables</topic><topic>Vegetables - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Li-dong</creatorcontrib><creatorcontrib>Wu, Hong-sheng</creatorcontrib><creatorcontrib>Gao, Zhi-qiu</creatorcontrib><creatorcontrib>Xu, Xiang-hua</creatorcontrib><creatorcontrib>Chen, Tie-xi</creatorcontrib><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Cheng, Hai-xiang</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Li-dong</au><au>Wu, Hong-sheng</au><au>Gao, Zhi-qiu</au><au>Xu, Xiang-hua</au><au>Chen, Tie-xi</au><au>Liu, Shuai</au><au>Cheng, Hai-xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>99</volume><issue>13</issue><spage>5709</spage><epage>5718</epage><pages>5709-5718</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N₂ g⁻¹ dry soil day⁻¹, and the anammox accounted for 5.9–20.5 % of total soil dinitrogen gas production. It is estimated that a total loss of 7.1–78.2 g N m⁻² year⁻¹ could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10⁵ to 3.0 × 10⁶ copies g⁻¹ dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25690313</pmid><doi>10.1007/s00253-015-6454-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2015-07, Vol.99 (13), p.5709-5718
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1687998436
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abundance
Ammonia-oxidizing bacteria
Ammonium
Ammonium Compounds - metabolism
anaerobic ammonium oxidation
Anaerobiosis
Analysis
Bacteria
Bacteria, Anaerobic - classification
Bacteria, Anaerobic - growth & development
Bacteria, Anaerobic - metabolism
Biomedical and Life Sciences
Biotechnology
Candidatus Anammoxoglobus
Candidatus Brocadia
Candidatus Jettenia
Candidatus Kuenenia
China
Cluster Analysis
Correlation analysis
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
Environmental Biotechnology
Gas production
Isotope Labeling
Life Sciences
Microbial Genetics and Genomics
Microbiology
Molecular Sequence Data
nitrifying bacteria
Nitrogen
Nitrogen (Chemical element)
Nitrogen - metabolism
Oil and gas production
Oxidation
Oxidation-Reduction
paddies
Phylogeny
Physiological aspects
quantitative polymerase chain reaction
Real-Time Polymerase Chain Reaction
Rice fields
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
soil
Soil analysis
Soil bacteria
Soil investigations
Soil Microbiology
Soil microorganisms
Soils
Stable isotopes
Vegetables
Vegetables - growth & development
title Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Occurrence%20and%20importance%20of%20anaerobic%20ammonium-oxidising%20bacteria%20in%20vegetable%20soils&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Shen,%20Li-dong&rft.date=2015-07-01&rft.volume=99&rft.issue=13&rft.spage=5709&rft.epage=5718&rft.pages=5709-5718&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6454-z&rft_dat=%3Cgale_proqu%3EA435968065%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511650522&rft_id=info:pmid/25690313&rft_galeid=A435968065&rfr_iscdi=true