An 'all pigment' model of excitation quenching in LHCII
The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by w...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2015-06, Vol.17 (24), p.15857-15867 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15867 |
---|---|
container_issue | 24 |
container_start_page | 15857 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Chmeliov, Jevgenij Bricker, William P Lo, Cynthia Jouin, Elodie Valkunas, Leonas Ruban, Alexander V Duffy, Christopher D P |
description | The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure. |
doi_str_mv | 10.1039/c5cp01905b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687996599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687996599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMobk4v_gDJbSJUk6ZJ-x1nUVcY6EHPJf2SzUib1qYF_fdON3d638PDy8tDyCVnt5wJuEOJHePAZHVEpjxRIgKWJceHnqoJOQvhgzHGJRenZBIrxlMm5ZSkC0_nuq5p5zaN9cOcNq2xNW3X1H6hG_TgWk8_R-vx3fkNdZ6ulnlRnJOTta6DvdjnjLw9Przmy2j1_FTki1WEApIhqhAQBAIzysScM26M0JnARKMUqCHDzJo4gyQG5KKqrEqVlrGsYiOlkImYkevdbte32xdhKBsX0Na19rYdQ8lVlgIoCbBFb3Yo9m0IvV2XXe8a3X-XnJW_ospc5i9_ou638NV-d6waaw7ovxnxA6bRYMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687996599</pqid></control><display><type>article</type><title>An 'all pigment' model of excitation quenching in LHCII</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chmeliov, Jevgenij ; Bricker, William P ; Lo, Cynthia ; Jouin, Elodie ; Valkunas, Leonas ; Ruban, Alexander V ; Duffy, Christopher D P</creator><creatorcontrib>Chmeliov, Jevgenij ; Bricker, William P ; Lo, Cynthia ; Jouin, Elodie ; Valkunas, Leonas ; Ruban, Alexander V ; Duffy, Christopher D P</creatorcontrib><description>The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp01905b</identifier><identifier>PMID: 26017055</identifier><language>eng</language><publisher>England</publisher><subject>Energy Transfer ; Models, Molecular ; Photosystem II Protein Complex - chemistry ; Photosystem II Protein Complex - metabolism ; Quantum Theory</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (24), p.15857-15867</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</citedby><cites>FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26017055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chmeliov, Jevgenij</creatorcontrib><creatorcontrib>Bricker, William P</creatorcontrib><creatorcontrib>Lo, Cynthia</creatorcontrib><creatorcontrib>Jouin, Elodie</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Ruban, Alexander V</creatorcontrib><creatorcontrib>Duffy, Christopher D P</creatorcontrib><title>An 'all pigment' model of excitation quenching in LHCII</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.</description><subject>Energy Transfer</subject><subject>Models, Molecular</subject><subject>Photosystem II Protein Complex - chemistry</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Quantum Theory</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEFLwzAYhoMobk4v_gDJbSJUk6ZJ-x1nUVcY6EHPJf2SzUib1qYF_fdON3d638PDy8tDyCVnt5wJuEOJHePAZHVEpjxRIgKWJceHnqoJOQvhgzHGJRenZBIrxlMm5ZSkC0_nuq5p5zaN9cOcNq2xNW3X1H6hG_TgWk8_R-vx3fkNdZ6ulnlRnJOTta6DvdjnjLw9Przmy2j1_FTki1WEApIhqhAQBAIzysScM26M0JnARKMUqCHDzJo4gyQG5KKqrEqVlrGsYiOlkImYkevdbte32xdhKBsX0Na19rYdQ8lVlgIoCbBFb3Yo9m0IvV2XXe8a3X-XnJW_ospc5i9_ou638NV-d6waaw7ovxnxA6bRYMM</recordid><startdate>20150628</startdate><enddate>20150628</enddate><creator>Chmeliov, Jevgenij</creator><creator>Bricker, William P</creator><creator>Lo, Cynthia</creator><creator>Jouin, Elodie</creator><creator>Valkunas, Leonas</creator><creator>Ruban, Alexander V</creator><creator>Duffy, Christopher D P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150628</creationdate><title>An 'all pigment' model of excitation quenching in LHCII</title><author>Chmeliov, Jevgenij ; Bricker, William P ; Lo, Cynthia ; Jouin, Elodie ; Valkunas, Leonas ; Ruban, Alexander V ; Duffy, Christopher D P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Energy Transfer</topic><topic>Models, Molecular</topic><topic>Photosystem II Protein Complex - chemistry</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chmeliov, Jevgenij</creatorcontrib><creatorcontrib>Bricker, William P</creatorcontrib><creatorcontrib>Lo, Cynthia</creatorcontrib><creatorcontrib>Jouin, Elodie</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Ruban, Alexander V</creatorcontrib><creatorcontrib>Duffy, Christopher D P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chmeliov, Jevgenij</au><au>Bricker, William P</au><au>Lo, Cynthia</au><au>Jouin, Elodie</au><au>Valkunas, Leonas</au><au>Ruban, Alexander V</au><au>Duffy, Christopher D P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An 'all pigment' model of excitation quenching in LHCII</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-06-28</date><risdate>2015</risdate><volume>17</volume><issue>24</issue><spage>15857</spage><epage>15867</epage><pages>15857-15867</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.</abstract><cop>England</cop><pmid>26017055</pmid><doi>10.1039/c5cp01905b</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (24), p.15857-15867 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1687996599 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Energy Transfer Models, Molecular Photosystem II Protein Complex - chemistry Photosystem II Protein Complex - metabolism Quantum Theory |
title | An 'all pigment' model of excitation quenching in LHCII |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20'all%20pigment'%20model%20of%20excitation%20quenching%20in%20LHCII&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chmeliov,%20Jevgenij&rft.date=2015-06-28&rft.volume=17&rft.issue=24&rft.spage=15857&rft.epage=15867&rft.pages=15857-15867&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp01905b&rft_dat=%3Cproquest_cross%3E1687996599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687996599&rft_id=info:pmid/26017055&rfr_iscdi=true |