An 'all pigment' model of excitation quenching in LHCII

The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-06, Vol.17 (24), p.15857-15867
Hauptverfasser: Chmeliov, Jevgenij, Bricker, William P, Lo, Cynthia, Jouin, Elodie, Valkunas, Leonas, Ruban, Alexander V, Duffy, Christopher D P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15867
container_issue 24
container_start_page 15857
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Chmeliov, Jevgenij
Bricker, William P
Lo, Cynthia
Jouin, Elodie
Valkunas, Leonas
Ruban, Alexander V
Duffy, Christopher D P
description The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.
doi_str_mv 10.1039/c5cp01905b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687996599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687996599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMobk4v_gDJbSJUk6ZJ-x1nUVcY6EHPJf2SzUib1qYF_fdON3d638PDy8tDyCVnt5wJuEOJHePAZHVEpjxRIgKWJceHnqoJOQvhgzHGJRenZBIrxlMm5ZSkC0_nuq5p5zaN9cOcNq2xNW3X1H6hG_TgWk8_R-vx3fkNdZ6ulnlRnJOTta6DvdjnjLw9Przmy2j1_FTki1WEApIhqhAQBAIzysScM26M0JnARKMUqCHDzJo4gyQG5KKqrEqVlrGsYiOlkImYkevdbte32xdhKBsX0Na19rYdQ8lVlgIoCbBFb3Yo9m0IvV2XXe8a3X-XnJW_ospc5i9_ou638NV-d6waaw7ovxnxA6bRYMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687996599</pqid></control><display><type>article</type><title>An 'all pigment' model of excitation quenching in LHCII</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chmeliov, Jevgenij ; Bricker, William P ; Lo, Cynthia ; Jouin, Elodie ; Valkunas, Leonas ; Ruban, Alexander V ; Duffy, Christopher D P</creator><creatorcontrib>Chmeliov, Jevgenij ; Bricker, William P ; Lo, Cynthia ; Jouin, Elodie ; Valkunas, Leonas ; Ruban, Alexander V ; Duffy, Christopher D P</creatorcontrib><description>The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (&gt;20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp01905b</identifier><identifier>PMID: 26017055</identifier><language>eng</language><publisher>England</publisher><subject>Energy Transfer ; Models, Molecular ; Photosystem II Protein Complex - chemistry ; Photosystem II Protein Complex - metabolism ; Quantum Theory</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (24), p.15857-15867</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</citedby><cites>FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26017055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chmeliov, Jevgenij</creatorcontrib><creatorcontrib>Bricker, William P</creatorcontrib><creatorcontrib>Lo, Cynthia</creatorcontrib><creatorcontrib>Jouin, Elodie</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Ruban, Alexander V</creatorcontrib><creatorcontrib>Duffy, Christopher D P</creatorcontrib><title>An 'all pigment' model of excitation quenching in LHCII</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (&gt;20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.</description><subject>Energy Transfer</subject><subject>Models, Molecular</subject><subject>Photosystem II Protein Complex - chemistry</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Quantum Theory</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEFLwzAYhoMobk4v_gDJbSJUk6ZJ-x1nUVcY6EHPJf2SzUib1qYF_fdON3d638PDy8tDyCVnt5wJuEOJHePAZHVEpjxRIgKWJceHnqoJOQvhgzHGJRenZBIrxlMm5ZSkC0_nuq5p5zaN9cOcNq2xNW3X1H6hG_TgWk8_R-vx3fkNdZ6ulnlRnJOTta6DvdjnjLw9Przmy2j1_FTki1WEApIhqhAQBAIzysScM26M0JnARKMUqCHDzJo4gyQG5KKqrEqVlrGsYiOlkImYkevdbte32xdhKBsX0Na19rYdQ8lVlgIoCbBFb3Yo9m0IvV2XXe8a3X-XnJW_ospc5i9_ou638NV-d6waaw7ovxnxA6bRYMM</recordid><startdate>20150628</startdate><enddate>20150628</enddate><creator>Chmeliov, Jevgenij</creator><creator>Bricker, William P</creator><creator>Lo, Cynthia</creator><creator>Jouin, Elodie</creator><creator>Valkunas, Leonas</creator><creator>Ruban, Alexander V</creator><creator>Duffy, Christopher D P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150628</creationdate><title>An 'all pigment' model of excitation quenching in LHCII</title><author>Chmeliov, Jevgenij ; Bricker, William P ; Lo, Cynthia ; Jouin, Elodie ; Valkunas, Leonas ; Ruban, Alexander V ; Duffy, Christopher D P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bc9c93c90d6d21101dd3a83c4ac53ca98c8ed289429c13bbe676a525b2d553543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Energy Transfer</topic><topic>Models, Molecular</topic><topic>Photosystem II Protein Complex - chemistry</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chmeliov, Jevgenij</creatorcontrib><creatorcontrib>Bricker, William P</creatorcontrib><creatorcontrib>Lo, Cynthia</creatorcontrib><creatorcontrib>Jouin, Elodie</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Ruban, Alexander V</creatorcontrib><creatorcontrib>Duffy, Christopher D P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chmeliov, Jevgenij</au><au>Bricker, William P</au><au>Lo, Cynthia</au><au>Jouin, Elodie</au><au>Valkunas, Leonas</au><au>Ruban, Alexander V</au><au>Duffy, Christopher D P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An 'all pigment' model of excitation quenching in LHCII</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-06-28</date><risdate>2015</risdate><volume>17</volume><issue>24</issue><spage>15857</spage><epage>15867</epage><pages>15857-15867</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (&gt;20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.</abstract><cop>England</cop><pmid>26017055</pmid><doi>10.1039/c5cp01905b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (24), p.15857-15867
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1687996599
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Energy Transfer
Models, Molecular
Photosystem II Protein Complex - chemistry
Photosystem II Protein Complex - metabolism
Quantum Theory
title An 'all pigment' model of excitation quenching in LHCII
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20'all%20pigment'%20model%20of%20excitation%20quenching%20in%20LHCII&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chmeliov,%20Jevgenij&rft.date=2015-06-28&rft.volume=17&rft.issue=24&rft.spage=15857&rft.epage=15867&rft.pages=15857-15867&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp01905b&rft_dat=%3Cproquest_cross%3E1687996599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687996599&rft_id=info:pmid/26017055&rfr_iscdi=true