Electron Transfer Budgets and Kinetics of Abiotic Oxidation and Incorporation of Aqueous Sulfide by Dissolved Organic Matter

The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-05, Vol.49 (9), p.5441-5449
Hauptverfasser: Yu, Zhi-Guo, Peiffer, Stefan, Göttlicher, Jörg, Knorr, Klaus-Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5449
container_issue 9
container_start_page 5441
container_title Environmental science & technology
container_volume 49
creator Yu, Zhi-Guo
Peiffer, Stefan
Göttlicher, Jörg
Knorr, Klaus-Holger
description The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH 6 under anoxic conditions. Sulfide reacted with nonreduced HA at conditional rate constants of 0.227–0.325 h–1. The main transformation products were elemental S (S0) and thiosulfate (S2O3 2–), yielding electron accepting capacities of 2.82–1.75 μmol e– (mg C)−1. Native iron contents in the HA could account for only 6–9% of this electron transfer. About 22–37% of S reacted with the HA to form organic S (Sorg). Formation of Sorg was observed and no inorganic transformation products occurred for reduced HA. X-ray absorption near edge structure spectroscopy supported Sorg to be mainly zerovalent, such as thiols, organic di- and polysulfides, or heterocycles. In conclusion, our results demonstrate that HA can abiotically reoxidize sulfide in anoxic environments at rates competitive to sulfide oxidation by molecular oxygen or iron oxides.
doi_str_mv 10.1021/es505531u
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687693360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687693360</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-961ab96aac808c7c847febcd44e10ee6814d2426e72bb56da3b32d29fe04d7f53</originalsourceid><addsrcrecordid>eNqN0cFKHTEUBuAgFb3VLvoCJVAKuhh7kswkmaVVa0XLXWjB3ZBJzkhk7uSazJQKffhmuFbEbrpKCF_-nPAT8p7BEQPOPmOqoKoEm7bIglUcikpX7A1ZADBR1ELe7pK3Kd0DABegd8guzwA0qAX5fdajHWMY6E00Q-ow0i-Tu8MxUTM4eukHHL1NNHT0uPUh7-nyl3dm9PnKLC4GG-I6xM3JzB4mDFOi11PfeYe0faSnPqXQ_0RHl_HODDnjuxlHjPtkuzN9wndP6x758fXs5uRbcbU8vzg5vipMycRY1JKZtpbGWA3aKqtL1WFrXVkiA0SpWel4ySUq3raVdEa0gjtedwilU10l9sjBJncdQ54ujc3KJ4t9b4Z51IZJrWQthIT_ocA010Jl-vEVvQ9THPJHZsVqwZUSWR1ulI0hpYhds45-ZeJjw6CZ22ue28v2w1Pi1K7QPcu_dWXwaQOMTS9e-yfoD0CIoTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681932773</pqid></control><display><type>article</type><title>Electron Transfer Budgets and Kinetics of Abiotic Oxidation and Incorporation of Aqueous Sulfide by Dissolved Organic Matter</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yu, Zhi-Guo ; Peiffer, Stefan ; Göttlicher, Jörg ; Knorr, Klaus-Holger</creator><creatorcontrib>Yu, Zhi-Guo ; Peiffer, Stefan ; Göttlicher, Jörg ; Knorr, Klaus-Holger</creatorcontrib><description>The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH 6 under anoxic conditions. Sulfide reacted with nonreduced HA at conditional rate constants of 0.227–0.325 h–1. The main transformation products were elemental S (S0) and thiosulfate (S2O3 2–), yielding electron accepting capacities of 2.82–1.75 μmol e– (mg C)−1. Native iron contents in the HA could account for only 6–9% of this electron transfer. About 22–37% of S reacted with the HA to form organic S (Sorg). Formation of Sorg was observed and no inorganic transformation products occurred for reduced HA. X-ray absorption near edge structure spectroscopy supported Sorg to be mainly zerovalent, such as thiols, organic di- and polysulfides, or heterocycles. In conclusion, our results demonstrate that HA can abiotically reoxidize sulfide in anoxic environments at rates competitive to sulfide oxidation by molecular oxygen or iron oxides.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es505531u</identifier><identifier>PMID: 25850807</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous solutions ; Chemical reactions ; Electron transfer ; Electron Transport ; Ferric Compounds - chemistry ; Humic Substances ; Iron - chemistry ; Kinetics ; Oxidation ; Oxidation-Reduction ; Spectrum analysis ; Sulfhydryl Compounds - chemistry ; Sulfides - chemistry ; Thiosulfates - chemistry ; Water - chemistry ; X-Ray Absorption Spectroscopy</subject><ispartof>Environmental science &amp; technology, 2015-05, Vol.49 (9), p.5441-5449</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society May 5, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-961ab96aac808c7c847febcd44e10ee6814d2426e72bb56da3b32d29fe04d7f53</citedby><cites>FETCH-LOGICAL-a413t-961ab96aac808c7c847febcd44e10ee6814d2426e72bb56da3b32d29fe04d7f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es505531u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es505531u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25850807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Zhi-Guo</creatorcontrib><creatorcontrib>Peiffer, Stefan</creatorcontrib><creatorcontrib>Göttlicher, Jörg</creatorcontrib><creatorcontrib>Knorr, Klaus-Holger</creatorcontrib><title>Electron Transfer Budgets and Kinetics of Abiotic Oxidation and Incorporation of Aqueous Sulfide by Dissolved Organic Matter</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH 6 under anoxic conditions. Sulfide reacted with nonreduced HA at conditional rate constants of 0.227–0.325 h–1. The main transformation products were elemental S (S0) and thiosulfate (S2O3 2–), yielding electron accepting capacities of 2.82–1.75 μmol e– (mg C)−1. Native iron contents in the HA could account for only 6–9% of this electron transfer. About 22–37% of S reacted with the HA to form organic S (Sorg). Formation of Sorg was observed and no inorganic transformation products occurred for reduced HA. X-ray absorption near edge structure spectroscopy supported Sorg to be mainly zerovalent, such as thiols, organic di- and polysulfides, or heterocycles. In conclusion, our results demonstrate that HA can abiotically reoxidize sulfide in anoxic environments at rates competitive to sulfide oxidation by molecular oxygen or iron oxides.</description><subject>Aqueous solutions</subject><subject>Chemical reactions</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Ferric Compounds - chemistry</subject><subject>Humic Substances</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Spectrum analysis</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Sulfides - chemistry</subject><subject>Thiosulfates - chemistry</subject><subject>Water - chemistry</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0cFKHTEUBuAgFb3VLvoCJVAKuhh7kswkmaVVa0XLXWjB3ZBJzkhk7uSazJQKffhmuFbEbrpKCF_-nPAT8p7BEQPOPmOqoKoEm7bIglUcikpX7A1ZADBR1ELe7pK3Kd0DABegd8guzwA0qAX5fdajHWMY6E00Q-ow0i-Tu8MxUTM4eukHHL1NNHT0uPUh7-nyl3dm9PnKLC4GG-I6xM3JzB4mDFOi11PfeYe0faSnPqXQ_0RHl_HODDnjuxlHjPtkuzN9wndP6x758fXs5uRbcbU8vzg5vipMycRY1JKZtpbGWA3aKqtL1WFrXVkiA0SpWel4ySUq3raVdEa0gjtedwilU10l9sjBJncdQ54ujc3KJ4t9b4Z51IZJrWQthIT_ocA010Jl-vEVvQ9THPJHZsVqwZUSWR1ulI0hpYhds45-ZeJjw6CZ22ue28v2w1Pi1K7QPcu_dWXwaQOMTS9e-yfoD0CIoTk</recordid><startdate>20150505</startdate><enddate>20150505</enddate><creator>Yu, Zhi-Guo</creator><creator>Peiffer, Stefan</creator><creator>Göttlicher, Jörg</creator><creator>Knorr, Klaus-Holger</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150505</creationdate><title>Electron Transfer Budgets and Kinetics of Abiotic Oxidation and Incorporation of Aqueous Sulfide by Dissolved Organic Matter</title><author>Yu, Zhi-Guo ; Peiffer, Stefan ; Göttlicher, Jörg ; Knorr, Klaus-Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-961ab96aac808c7c847febcd44e10ee6814d2426e72bb56da3b32d29fe04d7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Chemical reactions</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Ferric Compounds - chemistry</topic><topic>Humic Substances</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Spectrum analysis</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Sulfides - chemistry</topic><topic>Thiosulfates - chemistry</topic><topic>Water - chemistry</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhi-Guo</creatorcontrib><creatorcontrib>Peiffer, Stefan</creatorcontrib><creatorcontrib>Göttlicher, Jörg</creatorcontrib><creatorcontrib>Knorr, Klaus-Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhi-Guo</au><au>Peiffer, Stefan</au><au>Göttlicher, Jörg</au><au>Knorr, Klaus-Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transfer Budgets and Kinetics of Abiotic Oxidation and Incorporation of Aqueous Sulfide by Dissolved Organic Matter</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-05-05</date><risdate>2015</risdate><volume>49</volume><issue>9</issue><spage>5441</spage><epage>5449</epage><pages>5441-5449</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH 6 under anoxic conditions. Sulfide reacted with nonreduced HA at conditional rate constants of 0.227–0.325 h–1. The main transformation products were elemental S (S0) and thiosulfate (S2O3 2–), yielding electron accepting capacities of 2.82–1.75 μmol e– (mg C)−1. Native iron contents in the HA could account for only 6–9% of this electron transfer. About 22–37% of S reacted with the HA to form organic S (Sorg). Formation of Sorg was observed and no inorganic transformation products occurred for reduced HA. X-ray absorption near edge structure spectroscopy supported Sorg to be mainly zerovalent, such as thiols, organic di- and polysulfides, or heterocycles. In conclusion, our results demonstrate that HA can abiotically reoxidize sulfide in anoxic environments at rates competitive to sulfide oxidation by molecular oxygen or iron oxides.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25850807</pmid><doi>10.1021/es505531u</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-05, Vol.49 (9), p.5441-5449
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1687693360
source MEDLINE; ACS Publications
subjects Aqueous solutions
Chemical reactions
Electron transfer
Electron Transport
Ferric Compounds - chemistry
Humic Substances
Iron - chemistry
Kinetics
Oxidation
Oxidation-Reduction
Spectrum analysis
Sulfhydryl Compounds - chemistry
Sulfides - chemistry
Thiosulfates - chemistry
Water - chemistry
X-Ray Absorption Spectroscopy
title Electron Transfer Budgets and Kinetics of Abiotic Oxidation and Incorporation of Aqueous Sulfide by Dissolved Organic Matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transfer%20Budgets%20and%20Kinetics%20of%20Abiotic%20Oxidation%20and%20Incorporation%20of%20Aqueous%20Sulfide%20by%20Dissolved%20Organic%20Matter&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yu,%20Zhi-Guo&rft.date=2015-05-05&rft.volume=49&rft.issue=9&rft.spage=5441&rft.epage=5449&rft.pages=5441-5449&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es505531u&rft_dat=%3Cproquest_cross%3E1687693360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681932773&rft_id=info:pmid/25850807&rfr_iscdi=true