Impact of Joule Heating and pH on Biosolids Electro-Dewatering
Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2015-05, Vol.49 (9), p.5417-5424 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5424 |
---|---|
container_issue | 9 |
container_start_page | 5417 |
container_title | Environmental science & technology |
container_volume | 49 |
creator | Navab-Daneshmand, Tala Beton, Raphaël Hill, Reghan J Frigon, Dominic |
description | Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure. |
doi_str_mv | 10.1021/es5048254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687693257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680182551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</originalsourceid><addsrcrecordid>eNqN0M9LwzAUB_AgipvTg_-AFETQQzUvaX70IuicbjLwouCtpGkqHW0zkxbxvzdjc4he5B3e5cP38b4IHQO-BEzgyniGE0lYsoOGwAiOmWSwi4YYA41Tyl8H6MD7BcaYUCz30SDQNAwfoutZs1S6i2wZPdq-NtHUqK5q3yLVFtFyGtk2uq2st3VV-GhSG905G9-ZD9UZF9gh2itV7c3RZo_Qy_3keTyN508Ps_HNPFYJ0C7mknNWghAUK5EXBU5yqSnhDIgoWZlirWQic0G0EUIAVZKIIi2N4TzhWik6Qufr3KWz773xXdZUXpu6Vq2xvc-AS8FTSpj4D8UQymIQ6OkvurC9a8MjKwUhT0IS1MVaaWe9d6bMlq5qlPvMAGer_rNt_8GebBL7vDHFVn4XHsDZGijtf1z7E_QFRgiICw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681932814</pqid></control><display><type>article</type><title>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Navab-Daneshmand, Tala ; Beton, Raphaël ; Hill, Reghan J ; Frigon, Dominic</creator><creatorcontrib>Navab-Daneshmand, Tala ; Beton, Raphaël ; Hill, Reghan J ; Frigon, Dominic</creatorcontrib><description>Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es5048254</identifier><identifier>PMID: 25494946</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Airborne particulates ; Aqueous solutions ; Electrodes ; Energy efficiency ; Evaporation ; Heating - instrumentation ; Heating - methods ; Hot Temperature ; Hydrogen-Ion Concentration ; Optimization ; Sewage - chemistry ; Sludge ; Waste Disposal, Fluid - methods ; Waste Products ; Water - chemistry</subject><ispartof>Environmental science & technology, 2015-05, Vol.49 (9), p.5417-5424</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright American Chemical Society May 5, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</citedby><cites>FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es5048254$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es5048254$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25494946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navab-Daneshmand, Tala</creatorcontrib><creatorcontrib>Beton, Raphaël</creatorcontrib><creatorcontrib>Hill, Reghan J</creatorcontrib><creatorcontrib>Frigon, Dominic</creatorcontrib><title>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.</description><subject>Airborne particulates</subject><subject>Aqueous solutions</subject><subject>Electrodes</subject><subject>Energy efficiency</subject><subject>Evaporation</subject><subject>Heating - instrumentation</subject><subject>Heating - methods</subject><subject>Hot Temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>Optimization</subject><subject>Sewage - chemistry</subject><subject>Sludge</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Products</subject><subject>Water - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0M9LwzAUB_AgipvTg_-AFETQQzUvaX70IuicbjLwouCtpGkqHW0zkxbxvzdjc4he5B3e5cP38b4IHQO-BEzgyniGE0lYsoOGwAiOmWSwi4YYA41Tyl8H6MD7BcaYUCz30SDQNAwfoutZs1S6i2wZPdq-NtHUqK5q3yLVFtFyGtk2uq2st3VV-GhSG905G9-ZD9UZF9gh2itV7c3RZo_Qy_3keTyN508Ps_HNPFYJ0C7mknNWghAUK5EXBU5yqSnhDIgoWZlirWQic0G0EUIAVZKIIi2N4TzhWik6Qufr3KWz773xXdZUXpu6Vq2xvc-AS8FTSpj4D8UQymIQ6OkvurC9a8MjKwUhT0IS1MVaaWe9d6bMlq5qlPvMAGer_rNt_8GebBL7vDHFVn4XHsDZGijtf1z7E_QFRgiICw</recordid><startdate>20150505</startdate><enddate>20150505</enddate><creator>Navab-Daneshmand, Tala</creator><creator>Beton, Raphaël</creator><creator>Hill, Reghan J</creator><creator>Frigon, Dominic</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20150505</creationdate><title>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</title><author>Navab-Daneshmand, Tala ; Beton, Raphaël ; Hill, Reghan J ; Frigon, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Airborne particulates</topic><topic>Aqueous solutions</topic><topic>Electrodes</topic><topic>Energy efficiency</topic><topic>Evaporation</topic><topic>Heating - instrumentation</topic><topic>Heating - methods</topic><topic>Hot Temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>Optimization</topic><topic>Sewage - chemistry</topic><topic>Sludge</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Products</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navab-Daneshmand, Tala</creatorcontrib><creatorcontrib>Beton, Raphaël</creatorcontrib><creatorcontrib>Hill, Reghan J</creatorcontrib><creatorcontrib>Frigon, Dominic</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navab-Daneshmand, Tala</au><au>Beton, Raphaël</au><au>Hill, Reghan J</au><au>Frigon, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-05-05</date><risdate>2015</risdate><volume>49</volume><issue>9</issue><spage>5417</spage><epage>5424</epage><pages>5417-5424</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25494946</pmid><doi>10.1021/es5048254</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2015-05, Vol.49 (9), p.5417-5424 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1687693257 |
source | MEDLINE; American Chemical Society Journals |
subjects | Airborne particulates Aqueous solutions Electrodes Energy efficiency Evaporation Heating - instrumentation Heating - methods Hot Temperature Hydrogen-Ion Concentration Optimization Sewage - chemistry Sludge Waste Disposal, Fluid - methods Waste Products Water - chemistry |
title | Impact of Joule Heating and pH on Biosolids Electro-Dewatering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Joule%20Heating%20and%20pH%20on%20Biosolids%20Electro-Dewatering&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Navab-Daneshmand,%20Tala&rft.date=2015-05-05&rft.volume=49&rft.issue=9&rft.spage=5417&rft.epage=5424&rft.pages=5417-5424&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es5048254&rft_dat=%3Cproquest_cross%3E1680182551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681932814&rft_id=info:pmid/25494946&rfr_iscdi=true |