Impact of Joule Heating and pH on Biosolids Electro-Dewatering

Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-05, Vol.49 (9), p.5417-5424
Hauptverfasser: Navab-Daneshmand, Tala, Beton, Raphaël, Hill, Reghan J, Frigon, Dominic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5424
container_issue 9
container_start_page 5417
container_title Environmental science & technology
container_volume 49
creator Navab-Daneshmand, Tala
Beton, Raphaël
Hill, Reghan J
Frigon, Dominic
description Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.
doi_str_mv 10.1021/es5048254
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687693257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680182551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</originalsourceid><addsrcrecordid>eNqN0M9LwzAUB_AgipvTg_-AFETQQzUvaX70IuicbjLwouCtpGkqHW0zkxbxvzdjc4he5B3e5cP38b4IHQO-BEzgyniGE0lYsoOGwAiOmWSwi4YYA41Tyl8H6MD7BcaYUCz30SDQNAwfoutZs1S6i2wZPdq-NtHUqK5q3yLVFtFyGtk2uq2st3VV-GhSG905G9-ZD9UZF9gh2itV7c3RZo_Qy_3keTyN508Ps_HNPFYJ0C7mknNWghAUK5EXBU5yqSnhDIgoWZlirWQic0G0EUIAVZKIIi2N4TzhWik6Qufr3KWz773xXdZUXpu6Vq2xvc-AS8FTSpj4D8UQymIQ6OkvurC9a8MjKwUhT0IS1MVaaWe9d6bMlq5qlPvMAGer_rNt_8GebBL7vDHFVn4XHsDZGijtf1z7E_QFRgiICw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681932814</pqid></control><display><type>article</type><title>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Navab-Daneshmand, Tala ; Beton, Raphaël ; Hill, Reghan J ; Frigon, Dominic</creator><creatorcontrib>Navab-Daneshmand, Tala ; Beton, Raphaël ; Hill, Reghan J ; Frigon, Dominic</creatorcontrib><description>Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es5048254</identifier><identifier>PMID: 25494946</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Airborne particulates ; Aqueous solutions ; Electrodes ; Energy efficiency ; Evaporation ; Heating - instrumentation ; Heating - methods ; Hot Temperature ; Hydrogen-Ion Concentration ; Optimization ; Sewage - chemistry ; Sludge ; Waste Disposal, Fluid - methods ; Waste Products ; Water - chemistry</subject><ispartof>Environmental science &amp; technology, 2015-05, Vol.49 (9), p.5417-5424</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright American Chemical Society May 5, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</citedby><cites>FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es5048254$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es5048254$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25494946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navab-Daneshmand, Tala</creatorcontrib><creatorcontrib>Beton, Raphaël</creatorcontrib><creatorcontrib>Hill, Reghan J</creatorcontrib><creatorcontrib>Frigon, Dominic</creatorcontrib><title>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.</description><subject>Airborne particulates</subject><subject>Aqueous solutions</subject><subject>Electrodes</subject><subject>Energy efficiency</subject><subject>Evaporation</subject><subject>Heating - instrumentation</subject><subject>Heating - methods</subject><subject>Hot Temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>Optimization</subject><subject>Sewage - chemistry</subject><subject>Sludge</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Products</subject><subject>Water - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0M9LwzAUB_AgipvTg_-AFETQQzUvaX70IuicbjLwouCtpGkqHW0zkxbxvzdjc4he5B3e5cP38b4IHQO-BEzgyniGE0lYsoOGwAiOmWSwi4YYA41Tyl8H6MD7BcaYUCz30SDQNAwfoutZs1S6i2wZPdq-NtHUqK5q3yLVFtFyGtk2uq2st3VV-GhSG905G9-ZD9UZF9gh2itV7c3RZo_Qy_3keTyN508Ps_HNPFYJ0C7mknNWghAUK5EXBU5yqSnhDIgoWZlirWQic0G0EUIAVZKIIi2N4TzhWik6Qufr3KWz773xXdZUXpu6Vq2xvc-AS8FTSpj4D8UQymIQ6OkvurC9a8MjKwUhT0IS1MVaaWe9d6bMlq5qlPvMAGer_rNt_8GebBL7vDHFVn4XHsDZGijtf1z7E_QFRgiICw</recordid><startdate>20150505</startdate><enddate>20150505</enddate><creator>Navab-Daneshmand, Tala</creator><creator>Beton, Raphaël</creator><creator>Hill, Reghan J</creator><creator>Frigon, Dominic</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20150505</creationdate><title>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</title><author>Navab-Daneshmand, Tala ; Beton, Raphaël ; Hill, Reghan J ; Frigon, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-68665f17730a7bdd04b8c3265127f5f90ca848b72ce77713a827d9fee6646caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Airborne particulates</topic><topic>Aqueous solutions</topic><topic>Electrodes</topic><topic>Energy efficiency</topic><topic>Evaporation</topic><topic>Heating - instrumentation</topic><topic>Heating - methods</topic><topic>Hot Temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>Optimization</topic><topic>Sewage - chemistry</topic><topic>Sludge</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Products</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navab-Daneshmand, Tala</creatorcontrib><creatorcontrib>Beton, Raphaël</creatorcontrib><creatorcontrib>Hill, Reghan J</creatorcontrib><creatorcontrib>Frigon, Dominic</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navab-Daneshmand, Tala</au><au>Beton, Raphaël</au><au>Hill, Reghan J</au><au>Frigon, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Joule Heating and pH on Biosolids Electro-Dewatering</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-05-05</date><risdate>2015</risdate><volume>49</volume><issue>9</issue><spage>5417</spage><epage>5424</epage><pages>5417-5424</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25494946</pmid><doi>10.1021/es5048254</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-05, Vol.49 (9), p.5417-5424
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1687693257
source MEDLINE; American Chemical Society Journals
subjects Airborne particulates
Aqueous solutions
Electrodes
Energy efficiency
Evaporation
Heating - instrumentation
Heating - methods
Hot Temperature
Hydrogen-Ion Concentration
Optimization
Sewage - chemistry
Sludge
Waste Disposal, Fluid - methods
Waste Products
Water - chemistry
title Impact of Joule Heating and pH on Biosolids Electro-Dewatering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Joule%20Heating%20and%20pH%20on%20Biosolids%20Electro-Dewatering&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Navab-Daneshmand,%20Tala&rft.date=2015-05-05&rft.volume=49&rft.issue=9&rft.spage=5417&rft.epage=5424&rft.pages=5417-5424&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es5048254&rft_dat=%3Cproquest_cross%3E1680182551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681932814&rft_id=info:pmid/25494946&rfr_iscdi=true