Robust biological nitrogen fixation in a model grass–bacterial association
Summary Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants res...
Gespeichert in:
Veröffentlicht in: | The Plant Journal 2015-03, Vol.81 (6), p.907-919 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 919 |
---|---|
container_issue | 6 |
container_start_page | 907 |
container_title | The Plant Journal |
container_volume | 81 |
creator | Pankievicz, Vânia C. S. Amaral, Fernanda P. Santos, Karina F. D. N. Agtuca, Beverly Xu, Youwen Schueller, Michael J. Arisi, Ana Carolina M. Steffens, Maria. B.R. Souza, Emanuel M. Pedrosa, Fábio O. Stacey, Gary Ferrieri, Richard A. |
description | Summary
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.
Significance Statement
The results indicate that, under the appropriate conditions, the C4 model grass species, Setaria viridis, can obtain 100% of its nitrogen needs from biological nitrogen fixation, as a result of inoculation with plant growth promoting bacteria. The work supports the future use of S. viridis as a model system to explore the mechanistic aspects of associative nitrogen fixation with the goal of transferring this knowledge to important crop species, such as corn. |
doi_str_mv | 10.1111/tpj.12777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1687679554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1662432902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5147-942311b73275dcdf42f6b60cf1fedc5d849f70db83d87f6cf56f48a6c27aa2213</originalsourceid><addsrcrecordid>eNqN0c9qFTEUBvAgFnutLvoCMuhGF9Pm5O_MUkpbLRdapIK7kMkkt7nMnVyTDNpd36Fv2Ccx7dQuhILZHAI_PjjnQ2gf8AGUd5i36wMgUsoXaAFU8JoC_fESLXArcC0ZkF30OqU1xiCpYK_QLuGCcd7SBVp-C92UctX5MISVN3qoRp9jWNmxcv63zj6MlR8rXW1Cb4dqFXVKdze3nTbZRl94-QfjH-AbtOP0kOzbx7mHvp8cXx59qZfnp1-PPi9rw4HJumWEAnSSEsl70ztGnOgENg6c7Q3vG9Y6ifuuoX0jnTCOC8caLQyRWhMCdA-9n3NDyl4l47M1VyaMozVZATSMAy3o44y2MfycbMpq45Oxw6BHG6akQDRSyJZz9h9UEEZJi0mhH_6h6zDFsWx7r4DTcv62qE-zMjGkFK1T2-g3Ol4rwOq-MlUqUw-VFfvuMXHqNrZ_kn87KuBwBr_8YK-fT1KXF2dz5B99Mp_j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661533659</pqid></control><display><type>article</type><title>Robust biological nitrogen fixation in a model grass–bacterial association</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pankievicz, Vânia C. S. ; Amaral, Fernanda P. ; Santos, Karina F. D. N. ; Agtuca, Beverly ; Xu, Youwen ; Schueller, Michael J. ; Arisi, Ana Carolina M. ; Steffens, Maria. B.R. ; Souza, Emanuel M. ; Pedrosa, Fábio O. ; Stacey, Gary ; Ferrieri, Richard A.</creator><creatorcontrib>Pankievicz, Vânia C. S. ; Amaral, Fernanda P. ; Santos, Karina F. D. N. ; Agtuca, Beverly ; Xu, Youwen ; Schueller, Michael J. ; Arisi, Ana Carolina M. ; Steffens, Maria. B.R. ; Souza, Emanuel M. ; Pedrosa, Fábio O. ; Stacey, Gary ; Ferrieri, Richard A. ; Brookhaven National Laboratory (BNL) Positron Emission Tomography (PET) Facility</creatorcontrib><description>Summary
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.
Significance Statement
The results indicate that, under the appropriate conditions, the C4 model grass species, Setaria viridis, can obtain 100% of its nitrogen needs from biological nitrogen fixation, as a result of inoculation with plant growth promoting bacteria. The work supports the future use of S. viridis as a model system to explore the mechanistic aspects of associative nitrogen fixation with the goal of transferring this knowledge to important crop species, such as corn.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12777</identifier><identifier>PMID: 25645593</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Azospirillum brasilense ; Azospirillum brasilense - physiology ; Botany ; C-11 (carbon 11) ; Carbon Radioisotopes - analysis ; endophyte ; Endophytes ; Grasses ; Herbaspirillum - physiology ; Herbaspirillum seropedicae ; Models, Biological ; Nitrogen ; Nitrogen - metabolism ; Nitrogen Fixation ; PET (positron emission tomography) ; Plant growth ; plant growth promotion ; Plant Roots - metabolism ; Plant Roots - microbiology ; plants ; positron emission tomography (PET) facility ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; radioisotope ; Rhizosphere ; root imaging ; Setaria ; Setaria Plant - growth & development ; Setaria Plant - metabolism ; Setaria Plant - microbiology ; Setaria viridis</subject><ispartof>The Plant Journal, 2015-03, Vol.81 (6), p.907-919</ispartof><rights>2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd</rights><rights>2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5147-942311b73275dcdf42f6b60cf1fedc5d849f70db83d87f6cf56f48a6c27aa2213</citedby><cites>FETCH-LOGICAL-c5147-942311b73275dcdf42f6b60cf1fedc5d849f70db83d87f6cf56f48a6c27aa2213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12777$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12777$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25645593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1184513$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pankievicz, Vânia C. S.</creatorcontrib><creatorcontrib>Amaral, Fernanda P.</creatorcontrib><creatorcontrib>Santos, Karina F. D. N.</creatorcontrib><creatorcontrib>Agtuca, Beverly</creatorcontrib><creatorcontrib>Xu, Youwen</creatorcontrib><creatorcontrib>Schueller, Michael J.</creatorcontrib><creatorcontrib>Arisi, Ana Carolina M.</creatorcontrib><creatorcontrib>Steffens, Maria. B.R.</creatorcontrib><creatorcontrib>Souza, Emanuel M.</creatorcontrib><creatorcontrib>Pedrosa, Fábio O.</creatorcontrib><creatorcontrib>Stacey, Gary</creatorcontrib><creatorcontrib>Ferrieri, Richard A.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) Positron Emission Tomography (PET) Facility</creatorcontrib><title>Robust biological nitrogen fixation in a model grass–bacterial association</title><title>The Plant Journal</title><addtitle>Plant J</addtitle><description>Summary
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.
Significance Statement
The results indicate that, under the appropriate conditions, the C4 model grass species, Setaria viridis, can obtain 100% of its nitrogen needs from biological nitrogen fixation, as a result of inoculation with plant growth promoting bacteria. The work supports the future use of S. viridis as a model system to explore the mechanistic aspects of associative nitrogen fixation with the goal of transferring this knowledge to important crop species, such as corn.</description><subject>Azospirillum brasilense</subject><subject>Azospirillum brasilense - physiology</subject><subject>Botany</subject><subject>C-11 (carbon 11)</subject><subject>Carbon Radioisotopes - analysis</subject><subject>endophyte</subject><subject>Endophytes</subject><subject>Grasses</subject><subject>Herbaspirillum - physiology</subject><subject>Herbaspirillum seropedicae</subject><subject>Models, Biological</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Fixation</subject><subject>PET (positron emission tomography)</subject><subject>Plant growth</subject><subject>plant growth promotion</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>plants</subject><subject>positron emission tomography (PET) facility</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>radioisotope</subject><subject>Rhizosphere</subject><subject>root imaging</subject><subject>Setaria</subject><subject>Setaria Plant - growth & development</subject><subject>Setaria Plant - metabolism</subject><subject>Setaria Plant - microbiology</subject><subject>Setaria viridis</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9qFTEUBvAgFnutLvoCMuhGF9Pm5O_MUkpbLRdapIK7kMkkt7nMnVyTDNpd36Fv2Ccx7dQuhILZHAI_PjjnQ2gf8AGUd5i36wMgUsoXaAFU8JoC_fESLXArcC0ZkF30OqU1xiCpYK_QLuGCcd7SBVp-C92UctX5MISVN3qoRp9jWNmxcv63zj6MlR8rXW1Cb4dqFXVKdze3nTbZRl94-QfjH-AbtOP0kOzbx7mHvp8cXx59qZfnp1-PPi9rw4HJumWEAnSSEsl70ztGnOgENg6c7Q3vG9Y6ifuuoX0jnTCOC8caLQyRWhMCdA-9n3NDyl4l47M1VyaMozVZATSMAy3o44y2MfycbMpq45Oxw6BHG6akQDRSyJZz9h9UEEZJi0mhH_6h6zDFsWx7r4DTcv62qE-zMjGkFK1T2-g3Ol4rwOq-MlUqUw-VFfvuMXHqNrZ_kn87KuBwBr_8YK-fT1KXF2dz5B99Mp_j</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Pankievicz, Vânia C. S.</creator><creator>Amaral, Fernanda P.</creator><creator>Santos, Karina F. D. N.</creator><creator>Agtuca, Beverly</creator><creator>Xu, Youwen</creator><creator>Schueller, Michael J.</creator><creator>Arisi, Ana Carolina M.</creator><creator>Steffens, Maria. B.R.</creator><creator>Souza, Emanuel M.</creator><creator>Pedrosa, Fábio O.</creator><creator>Stacey, Gary</creator><creator>Ferrieri, Richard A.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>201503</creationdate><title>Robust biological nitrogen fixation in a model grass–bacterial association</title><author>Pankievicz, Vânia C. S. ; Amaral, Fernanda P. ; Santos, Karina F. D. N. ; Agtuca, Beverly ; Xu, Youwen ; Schueller, Michael J. ; Arisi, Ana Carolina M. ; Steffens, Maria. B.R. ; Souza, Emanuel M. ; Pedrosa, Fábio O. ; Stacey, Gary ; Ferrieri, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5147-942311b73275dcdf42f6b60cf1fedc5d849f70db83d87f6cf56f48a6c27aa2213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Azospirillum brasilense</topic><topic>Azospirillum brasilense - physiology</topic><topic>Botany</topic><topic>C-11 (carbon 11)</topic><topic>Carbon Radioisotopes - analysis</topic><topic>endophyte</topic><topic>Endophytes</topic><topic>Grasses</topic><topic>Herbaspirillum - physiology</topic><topic>Herbaspirillum seropedicae</topic><topic>Models, Biological</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Fixation</topic><topic>PET (positron emission tomography)</topic><topic>Plant growth</topic><topic>plant growth promotion</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>plants</topic><topic>positron emission tomography (PET) facility</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>radioisotope</topic><topic>Rhizosphere</topic><topic>root imaging</topic><topic>Setaria</topic><topic>Setaria Plant - growth & development</topic><topic>Setaria Plant - metabolism</topic><topic>Setaria Plant - microbiology</topic><topic>Setaria viridis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pankievicz, Vânia C. S.</creatorcontrib><creatorcontrib>Amaral, Fernanda P.</creatorcontrib><creatorcontrib>Santos, Karina F. D. N.</creatorcontrib><creatorcontrib>Agtuca, Beverly</creatorcontrib><creatorcontrib>Xu, Youwen</creatorcontrib><creatorcontrib>Schueller, Michael J.</creatorcontrib><creatorcontrib>Arisi, Ana Carolina M.</creatorcontrib><creatorcontrib>Steffens, Maria. B.R.</creatorcontrib><creatorcontrib>Souza, Emanuel M.</creatorcontrib><creatorcontrib>Pedrosa, Fábio O.</creatorcontrib><creatorcontrib>Stacey, Gary</creatorcontrib><creatorcontrib>Ferrieri, Richard A.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) Positron Emission Tomography (PET) Facility</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>The Plant Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pankievicz, Vânia C. S.</au><au>Amaral, Fernanda P.</au><au>Santos, Karina F. D. N.</au><au>Agtuca, Beverly</au><au>Xu, Youwen</au><au>Schueller, Michael J.</au><au>Arisi, Ana Carolina M.</au><au>Steffens, Maria. B.R.</au><au>Souza, Emanuel M.</au><au>Pedrosa, Fábio O.</au><au>Stacey, Gary</au><au>Ferrieri, Richard A.</au><aucorp>Brookhaven National Laboratory (BNL) Positron Emission Tomography (PET) Facility</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust biological nitrogen fixation in a model grass–bacterial association</atitle><jtitle>The Plant Journal</jtitle><addtitle>Plant J</addtitle><date>2015-03</date><risdate>2015</risdate><volume>81</volume><issue>6</issue><spage>907</spage><epage>919</epage><pages>907-919</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.
Significance Statement
The results indicate that, under the appropriate conditions, the C4 model grass species, Setaria viridis, can obtain 100% of its nitrogen needs from biological nitrogen fixation, as a result of inoculation with plant growth promoting bacteria. The work supports the future use of S. viridis as a model system to explore the mechanistic aspects of associative nitrogen fixation with the goal of transferring this knowledge to important crop species, such as corn.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25645593</pmid><doi>10.1111/tpj.12777</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant Journal, 2015-03, Vol.81 (6), p.907-919 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_1687679554 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Azospirillum brasilense Azospirillum brasilense - physiology Botany C-11 (carbon 11) Carbon Radioisotopes - analysis endophyte Endophytes Grasses Herbaspirillum - physiology Herbaspirillum seropedicae Models, Biological Nitrogen Nitrogen - metabolism Nitrogen Fixation PET (positron emission tomography) Plant growth plant growth promotion Plant Roots - metabolism Plant Roots - microbiology plants positron emission tomography (PET) facility RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY radioisotope Rhizosphere root imaging Setaria Setaria Plant - growth & development Setaria Plant - metabolism Setaria Plant - microbiology Setaria viridis |
title | Robust biological nitrogen fixation in a model grass–bacterial association |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20biological%20nitrogen%20fixation%20in%20a%20model%20grass%E2%80%93bacterial%20association&rft.jtitle=The%20Plant%20Journal&rft.au=Pankievicz,%20V%C3%A2nia%20C.%20S.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20Positron%20Emission%20Tomography%20(PET)%20Facility&rft.date=2015-03&rft.volume=81&rft.issue=6&rft.spage=907&rft.epage=919&rft.pages=907-919&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12777&rft_dat=%3Cproquest_osti_%3E1662432902%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661533659&rft_id=info:pmid/25645593&rfr_iscdi=true |