Chaos in kicked ratchets

We present a minimal one-dimensional deterministic continuous dynamical system that exhibits chaotic behavior and complex transport properties. Our model is an overdamped rocking ratchet with finite dissipation, that is periodically kicked with a δ function driving force, without finite inertia term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-03, Vol.91 (3), p.032901-032901, Article 032901
Hauptverfasser: Zarlenga, D G, Larrondo, H A, Arizmendi, C M, Family, Fereydoon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a minimal one-dimensional deterministic continuous dynamical system that exhibits chaotic behavior and complex transport properties. Our model is an overdamped rocking ratchet with finite dissipation, that is periodically kicked with a δ function driving force, without finite inertia terms or temporal or spatial stochastic forces. To our knowledge this is the simplest model reported in the literature for a ratchet, with this complex behavior. We develop an analytical approach that predicts many key features of the system, such as current reversals, as well as the presence of chaotic behavior and bifurcation. Our analytical approach allows us to study the transition from regular to chaotic motion as well as a tangent bifurcation associated with this transition. We show that our approach can be easily extended to other types of periodic driving forces. The square wave is shown as an example.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.91.032901