Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view
The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-met...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-06, Vol.142 (21), p.212425-212425 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212425 |
---|---|
container_issue | 21 |
container_start_page | 212425 |
container_title | The Journal of chemical physics |
container_volume | 142 |
creator | Brinzer, Thomas Berquist, Eric J Ren, Zhe Dutta, Samrat Johnson, Clinton A Krisher, Cullen S Lambrecht, Daniel S Garrett-Roe, Sean |
description | The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X](-) is the anion from the series hexafluorophosphate (PF6 (-)), tetrafluoroborate (BF4 (-)), bis-(trifluoromethyl)sulfonylimide (Tf2N(-)), triflate (TfO(-)), trifluoroacetate (TFA(-)), dicyanamide (DCA(-)), and thiocyanate (SCN(-))). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations. |
doi_str_mv | 10.1063/1.4917467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686995629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124812292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-edced16271eb920b4ae82e320e2591b330007ab5fd88dc2111f21d069ecb68a83</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoun4c_AMS8KAeumam3bTxJusnLAii55ImU4h0m5q0q_57q64ePA0zPLwwz8vYIYgpCJmewzRTkGcy32ATEIVKcqnEJpsIgZAoKeQO243xRQgBOWbbbAelyFSWzSZs9dz0Qdc69nzlqqB751vd8NiR6YOPxncf_BSvkvvHM-5rPn9A7lo-Qs7wxr0OzsYLPteh8i03uuuHQLwOfjku3zfr_LuzdBJ5513bf2WsHL3ts61aN5EO1nOPPd9cP83vksXD7f38cpGYNFd9QtaQBYk5UKVQVJmmAilFQThTUKXp-FKuq1lti8IaBIAawQqpyFSy0EW6x05_crvgXweKfbl00VDT6Jb8EEuQhVRqJlGN6PE_9MUPYZQRSwTMCkBUOFJnP5QZ7cRAddkFt9ThowRRfpVRQrkuY2SP1olDtST7R_7aTz8B_EWCrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124812292</pqid></control><display><type>article</type><title>Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Brinzer, Thomas ; Berquist, Eric J ; Ren, Zhe ; Dutta, Samrat ; Johnson, Clinton A ; Krisher, Cullen S ; Lambrecht, Daniel S ; Garrett-Roe, Sean</creator><creatorcontrib>Brinzer, Thomas ; Berquist, Eric J ; Ren, Zhe ; Dutta, Samrat ; Johnson, Clinton A ; Krisher, Cullen S ; Lambrecht, Daniel S ; Garrett-Roe, Sean</creatorcontrib><description>The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X](-) is the anion from the series hexafluorophosphate (PF6 (-)), tetrafluoroborate (BF4 (-)), bis-(trifluoromethyl)sulfonylimide (Tf2N(-)), triflate (TfO(-)), trifluoroacetate (TFA(-)), dicyanamide (DCA(-)), and thiocyanate (SCN(-))). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4917467</identifier><identifier>PMID: 26049445</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Anions ; Cages ; Carbon dioxide ; Carbon sequestration ; Cations ; Charge transfer ; Chromophores ; Density functional theory ; Infrared spectroscopy ; Ionic liquids ; Ions ; Solvation ; Solvents ; Spectrum analysis ; Thiocyanates ; Variation</subject><ispartof>The Journal of chemical physics, 2015-06, Vol.142 (21), p.212425-212425</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-edced16271eb920b4ae82e320e2591b330007ab5fd88dc2111f21d069ecb68a83</citedby><cites>FETCH-LOGICAL-c379t-edced16271eb920b4ae82e320e2591b330007ab5fd88dc2111f21d069ecb68a83</cites><orcidid>0000-0002-4167-391X ; 0000-0001-8186-9522 ; 0000-0001-6199-8773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26049445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brinzer, Thomas</creatorcontrib><creatorcontrib>Berquist, Eric J</creatorcontrib><creatorcontrib>Ren, Zhe</creatorcontrib><creatorcontrib>Dutta, Samrat</creatorcontrib><creatorcontrib>Johnson, Clinton A</creatorcontrib><creatorcontrib>Krisher, Cullen S</creatorcontrib><creatorcontrib>Lambrecht, Daniel S</creatorcontrib><creatorcontrib>Garrett-Roe, Sean</creatorcontrib><title>Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X](-) is the anion from the series hexafluorophosphate (PF6 (-)), tetrafluoroborate (BF4 (-)), bis-(trifluoromethyl)sulfonylimide (Tf2N(-)), triflate (TfO(-)), trifluoroacetate (TFA(-)), dicyanamide (DCA(-)), and thiocyanate (SCN(-))). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.</description><subject>Anharmonicity</subject><subject>Anions</subject><subject>Cages</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Cations</subject><subject>Charge transfer</subject><subject>Chromophores</subject><subject>Density functional theory</subject><subject>Infrared spectroscopy</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Thiocyanates</subject><subject>Variation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMoun4c_AMS8KAeumam3bTxJusnLAii55ImU4h0m5q0q_57q64ePA0zPLwwz8vYIYgpCJmewzRTkGcy32ATEIVKcqnEJpsIgZAoKeQO243xRQgBOWbbbAelyFSWzSZs9dz0Qdc69nzlqqB751vd8NiR6YOPxncf_BSvkvvHM-5rPn9A7lo-Qs7wxr0OzsYLPteh8i03uuuHQLwOfjku3zfr_LuzdBJ5513bf2WsHL3ts61aN5EO1nOPPd9cP83vksXD7f38cpGYNFd9QtaQBYk5UKVQVJmmAilFQThTUKXp-FKuq1lti8IaBIAawQqpyFSy0EW6x05_crvgXweKfbl00VDT6Jb8EEuQhVRqJlGN6PE_9MUPYZQRSwTMCkBUOFJnP5QZ7cRAddkFt9ThowRRfpVRQrkuY2SP1olDtST7R_7aTz8B_EWCrQ</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Brinzer, Thomas</creator><creator>Berquist, Eric J</creator><creator>Ren, Zhe</creator><creator>Dutta, Samrat</creator><creator>Johnson, Clinton A</creator><creator>Krisher, Cullen S</creator><creator>Lambrecht, Daniel S</creator><creator>Garrett-Roe, Sean</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4167-391X</orcidid><orcidid>https://orcid.org/0000-0001-8186-9522</orcidid><orcidid>https://orcid.org/0000-0001-6199-8773</orcidid></search><sort><creationdate>20150607</creationdate><title>Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view</title><author>Brinzer, Thomas ; Berquist, Eric J ; Ren, Zhe ; Dutta, Samrat ; Johnson, Clinton A ; Krisher, Cullen S ; Lambrecht, Daniel S ; Garrett-Roe, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-edced16271eb920b4ae82e320e2591b330007ab5fd88dc2111f21d069ecb68a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anharmonicity</topic><topic>Anions</topic><topic>Cages</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Cations</topic><topic>Charge transfer</topic><topic>Chromophores</topic><topic>Density functional theory</topic><topic>Infrared spectroscopy</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Thiocyanates</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinzer, Thomas</creatorcontrib><creatorcontrib>Berquist, Eric J</creatorcontrib><creatorcontrib>Ren, Zhe</creatorcontrib><creatorcontrib>Dutta, Samrat</creatorcontrib><creatorcontrib>Johnson, Clinton A</creatorcontrib><creatorcontrib>Krisher, Cullen S</creatorcontrib><creatorcontrib>Lambrecht, Daniel S</creatorcontrib><creatorcontrib>Garrett-Roe, Sean</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinzer, Thomas</au><au>Berquist, Eric J</au><au>Ren, Zhe</au><au>Dutta, Samrat</au><au>Johnson, Clinton A</au><au>Krisher, Cullen S</au><au>Lambrecht, Daniel S</au><au>Garrett-Roe, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>142</volume><issue>21</issue><spage>212425</spage><epage>212425</epage><pages>212425-212425</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X](-) is the anion from the series hexafluorophosphate (PF6 (-)), tetrafluoroborate (BF4 (-)), bis-(trifluoromethyl)sulfonylimide (Tf2N(-)), triflate (TfO(-)), trifluoroacetate (TFA(-)), dicyanamide (DCA(-)), and thiocyanate (SCN(-))). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26049445</pmid><doi>10.1063/1.4917467</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4167-391X</orcidid><orcidid>https://orcid.org/0000-0001-8186-9522</orcidid><orcidid>https://orcid.org/0000-0001-6199-8773</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-06, Vol.142 (21), p.212425-212425 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686995629 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anharmonicity Anions Cages Carbon dioxide Carbon sequestration Cations Charge transfer Chromophores Density functional theory Infrared spectroscopy Ionic liquids Ions Solvation Solvents Spectrum analysis Thiocyanates Variation |
title | Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20vibrational%20spectroscopy%20(2D-IR)%20of%20CO2%20in%20ionic%20liquids:%20Carbon%20capture%20from%20carbon%20dioxide's%20point%20of%20view&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Brinzer,%20Thomas&rft.date=2015-06-07&rft.volume=142&rft.issue=21&rft.spage=212425&rft.epage=212425&rft.pages=212425-212425&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4917467&rft_dat=%3Cproquest_cross%3E2124812292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124812292&rft_id=info:pmid/26049445&rfr_iscdi=true |