Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface

Molecular dynamics (MD) simulations have been applied to study the interactions between hydrophobic and hydrophilic faces of ordered cellulose chains and a single layer of graphene in explicit aqueous solvent. The hydrophobic cellulose face is predicted to form a stable complex with graphene. This i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2015-06, Vol.16 (6), p.1771-1783
Hauptverfasser: Alqus, Rasha, Eichhorn, Stephen J, Bryce, Richard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1783
container_issue 6
container_start_page 1771
container_title Biomacromolecules
container_volume 16
creator Alqus, Rasha
Eichhorn, Stephen J
Bryce, Richard A
description Molecular dynamics (MD) simulations have been applied to study the interactions between hydrophobic and hydrophilic faces of ordered cellulose chains and a single layer of graphene in explicit aqueous solvent. The hydrophobic cellulose face is predicted to form a stable complex with graphene. This interface remains solvent-excluded over the course of simulations; the cellulose chains contacting graphene in general preserve intra- and interchain hydrogen bonds and a tg orientation of hydroxymethyl groups. Greater flexibility is observed in the more solvent-exposed cellulose chains of the complex. By contrast, the hydrophilic face of cellulose exhibits progressive rearrangement over the course of MD simulations, as it seeks to present its hydrophobic face, with disrupted intra- and interchain hydrogen bonding; residue twisting to form CH-π interactions with graphene; and partial permeation of water. This transition is also accompanied by a more favorable cellulose–graphene adhesion energy as predicted at the PM6-DH2 level of theory. The stability of the cellulose–graphene hydrophobic interface in water exemplifies the amphiphilicity of cellulose and provides insight into favored interactions within graphene–cellulose materials. Furthermore, partial permeation of water between exterior cellulose chains may indicate potential in addressing cellulose recalcitrance.
doi_str_mv 10.1021/acs.biomac.5b00307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686994407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686994407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-737653e8e2fdf161f9ca4d7eb8bb7046c9c988663788ffaaf1f9202177af44ad3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhonRuDn9Ax5Mj15aaUuBHpepc8mMHjQeyVcKWZe2VGgPu_kf_If-EpmdHk0IkPC8b_gehC5jHMU4iW9AuqioTAMyygqMU8yO0DTOEhoSipPjn3sWMpazCTpzbosxzlOSnaJJQrF_Y3iKnh9NreRQgw1udy00lXSB0cFC1fVQG6eCedNtKr_qSlb9LoA-6DcqWFroNqpVXx-fb9ArG6xav2uQ6hydaKidujicM_R6f_eyeAjXT8vVYr4OIeW0D1nKaJYqrhJd6pjGOpdASqYKXhQMEypzmXNOaco41xpAeyLxQzMGmhAo0xm6Hns7a94H5XrRVE76b0OrzOBETDnNc0Iw82gyotIa56zSorNVA3YnYiz2JoU3KUaT4mDSh64O_UPRqPIv8qvOA9EI7MNbM9jWj_tf4zdnPYJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686994407</pqid></control><display><type>article</type><title>Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface</title><source>ACS Publications</source><source>MEDLINE</source><creator>Alqus, Rasha ; Eichhorn, Stephen J ; Bryce, Richard A</creator><creatorcontrib>Alqus, Rasha ; Eichhorn, Stephen J ; Bryce, Richard A</creatorcontrib><description>Molecular dynamics (MD) simulations have been applied to study the interactions between hydrophobic and hydrophilic faces of ordered cellulose chains and a single layer of graphene in explicit aqueous solvent. The hydrophobic cellulose face is predicted to form a stable complex with graphene. This interface remains solvent-excluded over the course of simulations; the cellulose chains contacting graphene in general preserve intra- and interchain hydrogen bonds and a tg orientation of hydroxymethyl groups. Greater flexibility is observed in the more solvent-exposed cellulose chains of the complex. By contrast, the hydrophilic face of cellulose exhibits progressive rearrangement over the course of MD simulations, as it seeks to present its hydrophobic face, with disrupted intra- and interchain hydrogen bonding; residue twisting to form CH-π interactions with graphene; and partial permeation of water. This transition is also accompanied by a more favorable cellulose–graphene adhesion energy as predicted at the PM6-DH2 level of theory. The stability of the cellulose–graphene hydrophobic interface in water exemplifies the amphiphilicity of cellulose and provides insight into favored interactions within graphene–cellulose materials. Furthermore, partial permeation of water between exterior cellulose chains may indicate potential in addressing cellulose recalcitrance.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.5b00307</identifier><identifier>PMID: 26015270</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cellulose - chemistry ; Graphite - chemistry ; Hydrophobic and Hydrophilic Interactions ; Molecular Dynamics Simulation ; Surface-Active Agents - chemistry</subject><ispartof>Biomacromolecules, 2015-06, Vol.16 (6), p.1771-1783</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-737653e8e2fdf161f9ca4d7eb8bb7046c9c988663788ffaaf1f9202177af44ad3</citedby><cites>FETCH-LOGICAL-a386t-737653e8e2fdf161f9ca4d7eb8bb7046c9c988663788ffaaf1f9202177af44ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5b00307$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.5b00307$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26015270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alqus, Rasha</creatorcontrib><creatorcontrib>Eichhorn, Stephen J</creatorcontrib><creatorcontrib>Bryce, Richard A</creatorcontrib><title>Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Molecular dynamics (MD) simulations have been applied to study the interactions between hydrophobic and hydrophilic faces of ordered cellulose chains and a single layer of graphene in explicit aqueous solvent. The hydrophobic cellulose face is predicted to form a stable complex with graphene. This interface remains solvent-excluded over the course of simulations; the cellulose chains contacting graphene in general preserve intra- and interchain hydrogen bonds and a tg orientation of hydroxymethyl groups. Greater flexibility is observed in the more solvent-exposed cellulose chains of the complex. By contrast, the hydrophilic face of cellulose exhibits progressive rearrangement over the course of MD simulations, as it seeks to present its hydrophobic face, with disrupted intra- and interchain hydrogen bonding; residue twisting to form CH-π interactions with graphene; and partial permeation of water. This transition is also accompanied by a more favorable cellulose–graphene adhesion energy as predicted at the PM6-DH2 level of theory. The stability of the cellulose–graphene hydrophobic interface in water exemplifies the amphiphilicity of cellulose and provides insight into favored interactions within graphene–cellulose materials. Furthermore, partial permeation of water between exterior cellulose chains may indicate potential in addressing cellulose recalcitrance.</description><subject>Cellulose - chemistry</subject><subject>Graphite - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Molecular Dynamics Simulation</subject><subject>Surface-Active Agents - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFPwyAYhonRuDn9Ax5Mj15aaUuBHpepc8mMHjQeyVcKWZe2VGgPu_kf_If-EpmdHk0IkPC8b_gehC5jHMU4iW9AuqioTAMyygqMU8yO0DTOEhoSipPjn3sWMpazCTpzbosxzlOSnaJJQrF_Y3iKnh9NreRQgw1udy00lXSB0cFC1fVQG6eCedNtKr_qSlb9LoA-6DcqWFroNqpVXx-fb9ArG6xav2uQ6hydaKidujicM_R6f_eyeAjXT8vVYr4OIeW0D1nKaJYqrhJd6pjGOpdASqYKXhQMEypzmXNOaco41xpAeyLxQzMGmhAo0xm6Hns7a94H5XrRVE76b0OrzOBETDnNc0Iw82gyotIa56zSorNVA3YnYiz2JoU3KUaT4mDSh64O_UPRqPIv8qvOA9EI7MNbM9jWj_tf4zdnPYJg</recordid><startdate>20150608</startdate><enddate>20150608</enddate><creator>Alqus, Rasha</creator><creator>Eichhorn, Stephen J</creator><creator>Bryce, Richard A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150608</creationdate><title>Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface</title><author>Alqus, Rasha ; Eichhorn, Stephen J ; Bryce, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-737653e8e2fdf161f9ca4d7eb8bb7046c9c988663788ffaaf1f9202177af44ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cellulose - chemistry</topic><topic>Graphite - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Molecular Dynamics Simulation</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alqus, Rasha</creatorcontrib><creatorcontrib>Eichhorn, Stephen J</creatorcontrib><creatorcontrib>Bryce, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alqus, Rasha</au><au>Eichhorn, Stephen J</au><au>Bryce, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2015-06-08</date><risdate>2015</risdate><volume>16</volume><issue>6</issue><spage>1771</spage><epage>1783</epage><pages>1771-1783</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Molecular dynamics (MD) simulations have been applied to study the interactions between hydrophobic and hydrophilic faces of ordered cellulose chains and a single layer of graphene in explicit aqueous solvent. The hydrophobic cellulose face is predicted to form a stable complex with graphene. This interface remains solvent-excluded over the course of simulations; the cellulose chains contacting graphene in general preserve intra- and interchain hydrogen bonds and a tg orientation of hydroxymethyl groups. Greater flexibility is observed in the more solvent-exposed cellulose chains of the complex. By contrast, the hydrophilic face of cellulose exhibits progressive rearrangement over the course of MD simulations, as it seeks to present its hydrophobic face, with disrupted intra- and interchain hydrogen bonding; residue twisting to form CH-π interactions with graphene; and partial permeation of water. This transition is also accompanied by a more favorable cellulose–graphene adhesion energy as predicted at the PM6-DH2 level of theory. The stability of the cellulose–graphene hydrophobic interface in water exemplifies the amphiphilicity of cellulose and provides insight into favored interactions within graphene–cellulose materials. Furthermore, partial permeation of water between exterior cellulose chains may indicate potential in addressing cellulose recalcitrance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26015270</pmid><doi>10.1021/acs.biomac.5b00307</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2015-06, Vol.16 (6), p.1771-1783
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_1686994407
source ACS Publications; MEDLINE
subjects Cellulose - chemistry
Graphite - chemistry
Hydrophobic and Hydrophilic Interactions
Molecular Dynamics Simulation
Surface-Active Agents - chemistry
title Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20Cellulose%20Amphiphilicity%20at%20the%20Graphene%E2%80%93Water%20Interface&rft.jtitle=Biomacromolecules&rft.au=Alqus,%20Rasha&rft.date=2015-06-08&rft.volume=16&rft.issue=6&rft.spage=1771&rft.epage=1783&rft.pages=1771-1783&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.5b00307&rft_dat=%3Cproquest_cross%3E1686994407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686994407&rft_id=info:pmid/26015270&rfr_iscdi=true