Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions
This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to...
Gespeichert in:
Veröffentlicht in: | Soft matter 2015-05, Vol.11 (19), p.3806-3811 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3811 |
---|---|
container_issue | 19 |
container_start_page | 3806 |
container_title | Soft matter |
container_volume | 11 |
creator | Shen, Yizhou Tao, Jie Tao, Haijun Chen, Shanlong Pan, Lei Wang, Tao |
description | This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property. |
doi_str_mv | 10.1039/c5sm00024f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686442619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686442619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</originalsourceid><addsrcrecordid>eNo9kDFPwzAYRC0EoqWw8ANQRoQUsB3H-TJWFQWkAgMFsUW24xCjJA62I9R_T6Cl093w7oaH0DnB1wQn-Y1KfYsxpqw6QFOSMRZzYHC478n7BJ14_4lxAozwYzShKaQpoTBF8kl01gc3qDA47SPTRX7otas3pbN9baVR0drwecPeotpoJ5yqjRLNSLlKqHGhbBecbaJvHYLpPiIfRNBRcKLzJhjb-VN0VInG67NdztDr8na9uI9Xz3cPi_kqVgnwECuFZU4EJZxkZUkwzahWGgA4hVLKDFiaSF0BYzKXigNRQBmkhIBIaMqrZIYut7-9s1-D9qFojVe6aUSn7eALwoEzRjnJR_RqiypnvXe6KnpnWuE2BcHFr9Nikb48_jldjvDF7neQrS736L_E5AezdnNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686442619</pqid></control><display><type>article</type><title>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shen, Yizhou ; Tao, Jie ; Tao, Haijun ; Chen, Shanlong ; Pan, Lei ; Wang, Tao</creator><creatorcontrib>Shen, Yizhou ; Tao, Jie ; Tao, Haijun ; Chen, Shanlong ; Pan, Lei ; Wang, Tao</creatorcontrib><description>This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm00024f</identifier><identifier>PMID: 25855128</identifier><language>eng</language><publisher>England</publisher><subject>Contact angle ; Droplets ; Liquids ; Nanostructure ; Scanning electron microscopy ; Sliding ; Titanium base alloys ; Wetting</subject><ispartof>Soft matter, 2015-05, Vol.11 (19), p.3806-3811</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</citedby><cites>FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25855128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Yizhou</creatorcontrib><creatorcontrib>Tao, Jie</creatorcontrib><creatorcontrib>Tao, Haijun</creatorcontrib><creatorcontrib>Chen, Shanlong</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><title>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.</description><subject>Contact angle</subject><subject>Droplets</subject><subject>Liquids</subject><subject>Nanostructure</subject><subject>Scanning electron microscopy</subject><subject>Sliding</subject><subject>Titanium base alloys</subject><subject>Wetting</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAYRC0EoqWw8ANQRoQUsB3H-TJWFQWkAgMFsUW24xCjJA62I9R_T6Cl093w7oaH0DnB1wQn-Y1KfYsxpqw6QFOSMRZzYHC478n7BJ14_4lxAozwYzShKaQpoTBF8kl01gc3qDA47SPTRX7otas3pbN9baVR0drwecPeotpoJ5yqjRLNSLlKqHGhbBecbaJvHYLpPiIfRNBRcKLzJhjb-VN0VInG67NdztDr8na9uI9Xz3cPi_kqVgnwECuFZU4EJZxkZUkwzahWGgA4hVLKDFiaSF0BYzKXigNRQBmkhIBIaMqrZIYut7-9s1-D9qFojVe6aUSn7eALwoEzRjnJR_RqiypnvXe6KnpnWuE2BcHFr9Nikb48_jldjvDF7neQrS736L_E5AezdnNf</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Shen, Yizhou</creator><creator>Tao, Jie</creator><creator>Tao, Haijun</creator><creator>Chen, Shanlong</creator><creator>Pan, Lei</creator><creator>Wang, Tao</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150521</creationdate><title>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</title><author>Shen, Yizhou ; Tao, Jie ; Tao, Haijun ; Chen, Shanlong ; Pan, Lei ; Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact angle</topic><topic>Droplets</topic><topic>Liquids</topic><topic>Nanostructure</topic><topic>Scanning electron microscopy</topic><topic>Sliding</topic><topic>Titanium base alloys</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yizhou</creatorcontrib><creatorcontrib>Tao, Jie</creatorcontrib><creatorcontrib>Tao, Haijun</creatorcontrib><creatorcontrib>Chen, Shanlong</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yizhou</au><au>Tao, Jie</au><au>Tao, Haijun</au><au>Chen, Shanlong</au><au>Pan, Lei</au><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>11</volume><issue>19</issue><spage>3806</spage><epage>3811</epage><pages>3806-3811</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.</abstract><cop>England</cop><pmid>25855128</pmid><doi>10.1039/c5sm00024f</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2015-05, Vol.11 (19), p.3806-3811 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686442619 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Contact angle Droplets Liquids Nanostructure Scanning electron microscopy Sliding Titanium base alloys Wetting |
title | Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructures%20in%20superhydrophobic%20Ti6Al4V%20hierarchical%20surfaces%20control%20wetting%20state%20transitions&rft.jtitle=Soft%20matter&rft.au=Shen,%20Yizhou&rft.date=2015-05-21&rft.volume=11&rft.issue=19&rft.spage=3806&rft.epage=3811&rft.pages=3806-3811&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm00024f&rft_dat=%3Cproquest_cross%3E1686442619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686442619&rft_id=info:pmid/25855128&rfr_iscdi=true |