Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions

This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2015-05, Vol.11 (19), p.3806-3811
Hauptverfasser: Shen, Yizhou, Tao, Jie, Tao, Haijun, Chen, Shanlong, Pan, Lei, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3811
container_issue 19
container_start_page 3806
container_title Soft matter
container_volume 11
creator Shen, Yizhou
Tao, Jie
Tao, Haijun
Chen, Shanlong
Pan, Lei
Wang, Tao
description This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.
doi_str_mv 10.1039/c5sm00024f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686442619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686442619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</originalsourceid><addsrcrecordid>eNo9kDFPwzAYRC0EoqWw8ANQRoQUsB3H-TJWFQWkAgMFsUW24xCjJA62I9R_T6Cl093w7oaH0DnB1wQn-Y1KfYsxpqw6QFOSMRZzYHC478n7BJ14_4lxAozwYzShKaQpoTBF8kl01gc3qDA47SPTRX7otas3pbN9baVR0drwecPeotpoJ5yqjRLNSLlKqHGhbBecbaJvHYLpPiIfRNBRcKLzJhjb-VN0VInG67NdztDr8na9uI9Xz3cPi_kqVgnwECuFZU4EJZxkZUkwzahWGgA4hVLKDFiaSF0BYzKXigNRQBmkhIBIaMqrZIYut7-9s1-D9qFojVe6aUSn7eALwoEzRjnJR_RqiypnvXe6KnpnWuE2BcHFr9Nikb48_jldjvDF7neQrS736L_E5AezdnNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686442619</pqid></control><display><type>article</type><title>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shen, Yizhou ; Tao, Jie ; Tao, Haijun ; Chen, Shanlong ; Pan, Lei ; Wang, Tao</creator><creatorcontrib>Shen, Yizhou ; Tao, Jie ; Tao, Haijun ; Chen, Shanlong ; Pan, Lei ; Wang, Tao</creatorcontrib><description>This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm00024f</identifier><identifier>PMID: 25855128</identifier><language>eng</language><publisher>England</publisher><subject>Contact angle ; Droplets ; Liquids ; Nanostructure ; Scanning electron microscopy ; Sliding ; Titanium base alloys ; Wetting</subject><ispartof>Soft matter, 2015-05, Vol.11 (19), p.3806-3811</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</citedby><cites>FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25855128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Yizhou</creatorcontrib><creatorcontrib>Tao, Jie</creatorcontrib><creatorcontrib>Tao, Haijun</creatorcontrib><creatorcontrib>Chen, Shanlong</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><title>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.</description><subject>Contact angle</subject><subject>Droplets</subject><subject>Liquids</subject><subject>Nanostructure</subject><subject>Scanning electron microscopy</subject><subject>Sliding</subject><subject>Titanium base alloys</subject><subject>Wetting</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAYRC0EoqWw8ANQRoQUsB3H-TJWFQWkAgMFsUW24xCjJA62I9R_T6Cl093w7oaH0DnB1wQn-Y1KfYsxpqw6QFOSMRZzYHC478n7BJ14_4lxAozwYzShKaQpoTBF8kl01gc3qDA47SPTRX7otas3pbN9baVR0drwecPeotpoJ5yqjRLNSLlKqHGhbBecbaJvHYLpPiIfRNBRcKLzJhjb-VN0VInG67NdztDr8na9uI9Xz3cPi_kqVgnwECuFZU4EJZxkZUkwzahWGgA4hVLKDFiaSF0BYzKXigNRQBmkhIBIaMqrZIYut7-9s1-D9qFojVe6aUSn7eALwoEzRjnJR_RqiypnvXe6KnpnWuE2BcHFr9Nikb48_jldjvDF7neQrS736L_E5AezdnNf</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Shen, Yizhou</creator><creator>Tao, Jie</creator><creator>Tao, Haijun</creator><creator>Chen, Shanlong</creator><creator>Pan, Lei</creator><creator>Wang, Tao</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150521</creationdate><title>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</title><author>Shen, Yizhou ; Tao, Jie ; Tao, Haijun ; Chen, Shanlong ; Pan, Lei ; Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-cc0b91a21617dd10272ece888628dbb78453bef844b9bc681c82485118a3256f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact angle</topic><topic>Droplets</topic><topic>Liquids</topic><topic>Nanostructure</topic><topic>Scanning electron microscopy</topic><topic>Sliding</topic><topic>Titanium base alloys</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yizhou</creatorcontrib><creatorcontrib>Tao, Jie</creatorcontrib><creatorcontrib>Tao, Haijun</creatorcontrib><creatorcontrib>Chen, Shanlong</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yizhou</au><au>Tao, Jie</au><au>Tao, Haijun</au><au>Chen, Shanlong</au><au>Pan, Lei</au><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>11</volume><issue>19</issue><spage>3806</spage><epage>3811</epage><pages>3806-3811</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ∼2°), demonstrating the robust non-wetting property.</abstract><cop>England</cop><pmid>25855128</pmid><doi>10.1039/c5sm00024f</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2015-05, Vol.11 (19), p.3806-3811
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1686442619
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Contact angle
Droplets
Liquids
Nanostructure
Scanning electron microscopy
Sliding
Titanium base alloys
Wetting
title Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructures%20in%20superhydrophobic%20Ti6Al4V%20hierarchical%20surfaces%20control%20wetting%20state%20transitions&rft.jtitle=Soft%20matter&rft.au=Shen,%20Yizhou&rft.date=2015-05-21&rft.volume=11&rft.issue=19&rft.spage=3806&rft.epage=3811&rft.pages=3806-3811&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm00024f&rft_dat=%3Cproquest_cross%3E1686442619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686442619&rft_id=info:pmid/25855128&rfr_iscdi=true