Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection

The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.704-708
Hauptverfasser: Privezentsev, D.G., Zhiznyakov, A.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 708
container_issue Mechanical Engineering, Automation and Control Systems
container_start_page 704
container_title Applied Mechanics and Materials
container_volume 756
creator Privezentsev, D.G.
Zhiznyakov, A.L.
description The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given
doi_str_mv 10.4028/www.scientific.net/AMM.756.704
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686441259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686441259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-5bd701318255aea9433241a19d5ad8a612b97aa78e96924f24f545acdc8c06763</originalsourceid><addsrcrecordid>eNqNkVtrGzEQRkWbQnPpf1gIlL7sRndpX0qD01zAIQE3z0KWZ22lu6tUkmvy7yPHgYQ8BQQCzdE3wxyEvhPccEz1yWazaZLzMGbfedeMkE9Or68bJWSjMP-E9omUtFZc08_ogGGmmeBY8b3nAq5bxuRXdJDSPcaSE6730XCXoApdNQ3O9tVkZaN1GaJP2bu0Lcyg7-qZH3xvo8-P26czv_S50FeDXUKquhCrWej_-3FZ5RVUtzHMexief09K3N_qDDK47MN4hL50tk_w7eU-RHfnv_9MLuvpzcXV5HRaO6IYr8V8oTBhRFMhLNiWM0Y5saRdCLvQVhI6b5W1SkMrW8q7cgQX1i2cdlgqyQ7Rj13uQwz_1pCyGXxy0Pd2hLBOhkgtOSdUtAU9fofeh3Ucy3SFUkpgSemW-rmjXAwpRejMQ_SDjY-GYLNVY4oa86rGFDWmqDFFjSlqSsCvXUCOdkxlHas3fT4W8QRcmJ0K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677506229</pqid></control><display><type>article</type><title>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</title><source>Scientific.net Journals</source><creator>Privezentsev, D.G. ; Zhiznyakov, A.L.</creator><creatorcontrib>Privezentsev, D.G. ; Zhiznyakov, A.L.</creatorcontrib><description>The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038354074</identifier><identifier>ISBN: 9783038354079</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.756.704</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Algorithms ; Digital ; Distributing ; Fractal analysis ; Fracture mechanics ; Image detection ; Self-similarity ; Tasks</subject><ispartof>Applied Mechanics and Materials, 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.704-708</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1734-5bd701318255aea9433241a19d5ad8a612b97aa78e96924f24f545acdc8c06763</cites><orcidid>0000-0001-7935-1388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3793?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Privezentsev, D.G.</creatorcontrib><creatorcontrib>Zhiznyakov, A.L.</creatorcontrib><title>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</title><title>Applied Mechanics and Materials</title><description>The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given</description><subject>Algorithms</subject><subject>Digital</subject><subject>Distributing</subject><subject>Fractal analysis</subject><subject>Fracture mechanics</subject><subject>Image detection</subject><subject>Self-similarity</subject><subject>Tasks</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038354074</isbn><isbn>9783038354079</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkVtrGzEQRkWbQnPpf1gIlL7sRndpX0qD01zAIQE3z0KWZ22lu6tUkmvy7yPHgYQ8BQQCzdE3wxyEvhPccEz1yWazaZLzMGbfedeMkE9Or68bJWSjMP-E9omUtFZc08_ogGGmmeBY8b3nAq5bxuRXdJDSPcaSE6730XCXoApdNQ3O9tVkZaN1GaJP2bu0Lcyg7-qZH3xvo8-P26czv_S50FeDXUKquhCrWej_-3FZ5RVUtzHMexief09K3N_qDDK47MN4hL50tk_w7eU-RHfnv_9MLuvpzcXV5HRaO6IYr8V8oTBhRFMhLNiWM0Y5saRdCLvQVhI6b5W1SkMrW8q7cgQX1i2cdlgqyQ7Rj13uQwz_1pCyGXxy0Pd2hLBOhkgtOSdUtAU9fofeh3Ucy3SFUkpgSemW-rmjXAwpRejMQ_SDjY-GYLNVY4oa86rGFDWmqDFFjSlqSsCvXUCOdkxlHas3fT4W8QRcmJ0K</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Privezentsev, D.G.</creator><creator>Zhiznyakov, A.L.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7935-1388</orcidid></search><sort><creationdate>20150401</creationdate><title>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</title><author>Privezentsev, D.G. ; Zhiznyakov, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-5bd701318255aea9433241a19d5ad8a612b97aa78e96924f24f545acdc8c06763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Digital</topic><topic>Distributing</topic><topic>Fractal analysis</topic><topic>Fracture mechanics</topic><topic>Image detection</topic><topic>Self-similarity</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Privezentsev, D.G.</creatorcontrib><creatorcontrib>Zhiznyakov, A.L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Privezentsev, D.G.</au><au>Zhiznyakov, A.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>756</volume><issue>Mechanical Engineering, Automation and Control Systems</issue><spage>704</spage><epage>708</epage><pages>704-708</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038354074</isbn><isbn>9783038354079</isbn><abstract>The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.756.704</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7935-1388</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.704-708
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1686441259
source Scientific.net Journals
subjects Algorithms
Digital
Distributing
Fractal analysis
Fracture mechanics
Image detection
Self-similarity
Tasks
title Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Local%20Characteristics%20of%20Self-Similarity%20of%20Digital%20Images%20for%20Solving%20the%20Problems%20of%20Crack%20Detection&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Privezentsev,%20D.G.&rft.date=2015-04-01&rft.volume=756&rft.issue=Mechanical%20Engineering,%20Automation%20and%20Control%20Systems&rft.spage=704&rft.epage=708&rft.pages=704-708&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038354074&rft.isbn_list=9783038354079&rft_id=info:doi/10.4028/www.scientific.net/AMM.756.704&rft_dat=%3Cproquest_cross%3E1686441259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677506229&rft_id=info:pmid/&rfr_iscdi=true