Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection
The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results o...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.704-708 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | Mechanical Engineering, Automation and Control Systems |
container_start_page | 704 |
container_title | Applied Mechanics and Materials |
container_volume | 756 |
creator | Privezentsev, D.G. Zhiznyakov, A.L. |
description | The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given |
doi_str_mv | 10.4028/www.scientific.net/AMM.756.704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686441259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686441259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-5bd701318255aea9433241a19d5ad8a612b97aa78e96924f24f545acdc8c06763</originalsourceid><addsrcrecordid>eNqNkVtrGzEQRkWbQnPpf1gIlL7sRndpX0qD01zAIQE3z0KWZ22lu6tUkmvy7yPHgYQ8BQQCzdE3wxyEvhPccEz1yWazaZLzMGbfedeMkE9Or68bJWSjMP-E9omUtFZc08_ogGGmmeBY8b3nAq5bxuRXdJDSPcaSE6730XCXoApdNQ3O9tVkZaN1GaJP2bu0Lcyg7-qZH3xvo8-P26czv_S50FeDXUKquhCrWej_-3FZ5RVUtzHMexief09K3N_qDDK47MN4hL50tk_w7eU-RHfnv_9MLuvpzcXV5HRaO6IYr8V8oTBhRFMhLNiWM0Y5saRdCLvQVhI6b5W1SkMrW8q7cgQX1i2cdlgqyQ7Rj13uQwz_1pCyGXxy0Pd2hLBOhkgtOSdUtAU9fofeh3Ucy3SFUkpgSemW-rmjXAwpRejMQ_SDjY-GYLNVY4oa86rGFDWmqDFFjSlqSsCvXUCOdkxlHas3fT4W8QRcmJ0K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677506229</pqid></control><display><type>article</type><title>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</title><source>Scientific.net Journals</source><creator>Privezentsev, D.G. ; Zhiznyakov, A.L.</creator><creatorcontrib>Privezentsev, D.G. ; Zhiznyakov, A.L.</creatorcontrib><description>The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038354074</identifier><identifier>ISBN: 9783038354079</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.756.704</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Algorithms ; Digital ; Distributing ; Fractal analysis ; Fracture mechanics ; Image detection ; Self-similarity ; Tasks</subject><ispartof>Applied Mechanics and Materials, 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.704-708</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1734-5bd701318255aea9433241a19d5ad8a612b97aa78e96924f24f545acdc8c06763</cites><orcidid>0000-0001-7935-1388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3793?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Privezentsev, D.G.</creatorcontrib><creatorcontrib>Zhiznyakov, A.L.</creatorcontrib><title>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</title><title>Applied Mechanics and Materials</title><description>The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given</description><subject>Algorithms</subject><subject>Digital</subject><subject>Distributing</subject><subject>Fractal analysis</subject><subject>Fracture mechanics</subject><subject>Image detection</subject><subject>Self-similarity</subject><subject>Tasks</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038354074</isbn><isbn>9783038354079</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkVtrGzEQRkWbQnPpf1gIlL7sRndpX0qD01zAIQE3z0KWZ22lu6tUkmvy7yPHgYQ8BQQCzdE3wxyEvhPccEz1yWazaZLzMGbfedeMkE9Or68bJWSjMP-E9omUtFZc08_ogGGmmeBY8b3nAq5bxuRXdJDSPcaSE6730XCXoApdNQ3O9tVkZaN1GaJP2bu0Lcyg7-qZH3xvo8-P26czv_S50FeDXUKquhCrWej_-3FZ5RVUtzHMexief09K3N_qDDK47MN4hL50tk_w7eU-RHfnv_9MLuvpzcXV5HRaO6IYr8V8oTBhRFMhLNiWM0Y5saRdCLvQVhI6b5W1SkMrW8q7cgQX1i2cdlgqyQ7Rj13uQwz_1pCyGXxy0Pd2hLBOhkgtOSdUtAU9fofeh3Ucy3SFUkpgSemW-rmjXAwpRejMQ_SDjY-GYLNVY4oa86rGFDWmqDFFjSlqSsCvXUCOdkxlHas3fT4W8QRcmJ0K</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Privezentsev, D.G.</creator><creator>Zhiznyakov, A.L.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7935-1388</orcidid></search><sort><creationdate>20150401</creationdate><title>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</title><author>Privezentsev, D.G. ; Zhiznyakov, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-5bd701318255aea9433241a19d5ad8a612b97aa78e96924f24f545acdc8c06763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Digital</topic><topic>Distributing</topic><topic>Fractal analysis</topic><topic>Fracture mechanics</topic><topic>Image detection</topic><topic>Self-similarity</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Privezentsev, D.G.</creatorcontrib><creatorcontrib>Zhiznyakov, A.L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Privezentsev, D.G.</au><au>Zhiznyakov, A.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>756</volume><issue>Mechanical Engineering, Automation and Control Systems</issue><spage>704</spage><epage>708</epage><pages>704-708</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038354074</isbn><isbn>9783038354079</isbn><abstract>The task of analyzing digital images on the basis of local characteristics of self-similarity is considered in this article. The algorithm of forming fractal characteristics of images and the detection algorithm, which can be used to solve the problems of task detection, are described. The results of studying the possibility of distributing the self-similarity in the problems of crack-detection are given</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.756.704</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7935-1388</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.704-708 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686441259 |
source | Scientific.net Journals |
subjects | Algorithms Digital Distributing Fractal analysis Fracture mechanics Image detection Self-similarity Tasks |
title | Use of Local Characteristics of Self-Similarity of Digital Images for Solving the Problems of Crack Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Local%20Characteristics%20of%20Self-Similarity%20of%20Digital%20Images%20for%20Solving%20the%20Problems%20of%20Crack%20Detection&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Privezentsev,%20D.G.&rft.date=2015-04-01&rft.volume=756&rft.issue=Mechanical%20Engineering,%20Automation%20and%20Control%20Systems&rft.spage=704&rft.epage=708&rft.pages=704-708&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038354074&rft.isbn_list=9783038354079&rft_id=info:doi/10.4028/www.scientific.net/AMM.756.704&rft_dat=%3Cproquest_cross%3E1686441259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677506229&rft_id=info:pmid/&rfr_iscdi=true |