Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models

The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer science issues 2015-03, Vol.12 (2), p.260-260
Hauptverfasser: Mohammed, Onimode Bayo, Kolo, Alhassan John, Solomon, Adepoju A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 260
container_title International journal of computer science issues
container_volume 12
creator Mohammed, Onimode Bayo
Kolo, Alhassan John
Solomon, Adepoju A
description The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686440771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3670864761</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-bf0c3755923bc41b82947984a469814472ee274e15eb7557a18678d112acaeca3</originalsourceid><addsrcrecordid>eNpdUE1PwzAMrRBITGP_IRKXcahUt2mSHquKwaQBUhnnyW3dqaNrRpIyceG3k_FxwQc_6_nJfvZZMAGR8TCSip__1Qr4ZTCzdhf54KkAoSbBZ6H3BzToundiz25sPphu2XJoe0_pgZXoyLKFNlSjdd2wZS_2lBdETejpI5qG5cZ1bVd32LNHGs03uKM2r5bh4Nuj06ykrSFrT2vmeXnDHnRDvb0KLlrsLc1-cRqsF7fr4j5cPd0ti3wVHgRAWLVRncg0zeKkqjlUKs64zBRHLjJ_FZcxUSw5QUqVl0kEJaRqAGKs0RtPpsH8Z-zB6LeRrNvsO1tT3-NAerQb_wrBeSQleOn1P-lOj2bw5rxKygRUAmnyBSDvaW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677318315</pqid></control><display><type>article</type><title>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mohammed, Onimode Bayo ; Kolo, Alhassan John ; Solomon, Adepoju A</creator><creatorcontrib>Mohammed, Onimode Bayo ; Kolo, Alhassan John ; Solomon, Adepoju A</creatorcontrib><description>The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.</description><identifier>ISSN: 1694-0814</identifier><identifier>EISSN: 1694-0784</identifier><language>eng</language><publisher>Mahebourg: International Journal of Computer Science Issues (IJCSI)</publisher><subject>Automotive components ; Autoregressive processes ; Computer science ; Computer simulation ; Effectiveness ; Forecasting ; Inflation ; Mathematical models ; Neural networks</subject><ispartof>International journal of computer science issues, 2015-03, Vol.12 (2), p.260-260</ispartof><rights>Copyright International Journal of Computer Science Issues (IJCSI) Mar 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Mohammed, Onimode Bayo</creatorcontrib><creatorcontrib>Kolo, Alhassan John</creatorcontrib><creatorcontrib>Solomon, Adepoju A</creatorcontrib><title>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</title><title>International journal of computer science issues</title><description>The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.</description><subject>Automotive components</subject><subject>Autoregressive processes</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Effectiveness</subject><subject>Forecasting</subject><subject>Inflation</subject><subject>Mathematical models</subject><subject>Neural networks</subject><issn>1694-0814</issn><issn>1694-0784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUE1PwzAMrRBITGP_IRKXcahUt2mSHquKwaQBUhnnyW3dqaNrRpIyceG3k_FxwQc_6_nJfvZZMAGR8TCSip__1Qr4ZTCzdhf54KkAoSbBZ6H3BzToundiz25sPphu2XJoe0_pgZXoyLKFNlSjdd2wZS_2lBdETejpI5qG5cZ1bVd32LNHGs03uKM2r5bh4Nuj06ykrSFrT2vmeXnDHnRDvb0KLlrsLc1-cRqsF7fr4j5cPd0ti3wVHgRAWLVRncg0zeKkqjlUKs64zBRHLjJ_FZcxUSw5QUqVl0kEJaRqAGKs0RtPpsH8Z-zB6LeRrNvsO1tT3-NAerQb_wrBeSQleOn1P-lOj2bw5rxKygRUAmnyBSDvaW8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Mohammed, Onimode Bayo</creator><creator>Kolo, Alhassan John</creator><creator>Solomon, Adepoju A</creator><general>International Journal of Computer Science Issues (IJCSI)</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20150301</creationdate><title>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</title><author>Mohammed, Onimode Bayo ; Kolo, Alhassan John ; Solomon, Adepoju A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-bf0c3755923bc41b82947984a469814472ee274e15eb7557a18678d112acaeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive components</topic><topic>Autoregressive processes</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Effectiveness</topic><topic>Forecasting</topic><topic>Inflation</topic><topic>Mathematical models</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Onimode Bayo</creatorcontrib><creatorcontrib>Kolo, Alhassan John</creatorcontrib><creatorcontrib>Solomon, Adepoju A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer science issues</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Onimode Bayo</au><au>Kolo, Alhassan John</au><au>Solomon, Adepoju A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</atitle><jtitle>International journal of computer science issues</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>12</volume><issue>2</issue><spage>260</spage><epage>260</epage><pages>260-260</pages><issn>1694-0814</issn><eissn>1694-0784</eissn><abstract>The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.</abstract><cop>Mahebourg</cop><pub>International Journal of Computer Science Issues (IJCSI)</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1694-0814
ispartof International journal of computer science issues, 2015-03, Vol.12 (2), p.260-260
issn 1694-0814
1694-0784
language eng
recordid cdi_proquest_miscellaneous_1686440771
source EZB-FREE-00999 freely available EZB journals
subjects Automotive components
Autoregressive processes
Computer science
Computer simulation
Effectiveness
Forecasting
Inflation
Mathematical models
Neural networks
title Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Inflation%20Rates%20Forecasting%20Using%20Feed-Forward%20Artificial%20Neural%20Networks%20and%20Auto%20Regressive%20(AR)%20Models&rft.jtitle=International%20journal%20of%20computer%20science%20issues&rft.au=Mohammed,%20Onimode%20Bayo&rft.date=2015-03-01&rft.volume=12&rft.issue=2&rft.spage=260&rft.epage=260&rft.pages=260-260&rft.issn=1694-0814&rft.eissn=1694-0784&rft_id=info:doi/&rft_dat=%3Cproquest%3E3670864761%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677318315&rft_id=info:pmid/&rfr_iscdi=true