Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models
The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on...
Gespeichert in:
Veröffentlicht in: | International journal of computer science issues 2015-03, Vol.12 (2), p.260-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 260 |
container_title | International journal of computer science issues |
container_volume | 12 |
creator | Mohammed, Onimode Bayo Kolo, Alhassan John Solomon, Adepoju A |
description | The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686440771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3670864761</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-bf0c3755923bc41b82947984a469814472ee274e15eb7557a18678d112acaeca3</originalsourceid><addsrcrecordid>eNpdUE1PwzAMrRBITGP_IRKXcahUt2mSHquKwaQBUhnnyW3dqaNrRpIyceG3k_FxwQc_6_nJfvZZMAGR8TCSip__1Qr4ZTCzdhf54KkAoSbBZ6H3BzToundiz25sPphu2XJoe0_pgZXoyLKFNlSjdd2wZS_2lBdETejpI5qG5cZ1bVd32LNHGs03uKM2r5bh4Nuj06ykrSFrT2vmeXnDHnRDvb0KLlrsLc1-cRqsF7fr4j5cPd0ti3wVHgRAWLVRncg0zeKkqjlUKs64zBRHLjJ_FZcxUSw5QUqVl0kEJaRqAGKs0RtPpsH8Z-zB6LeRrNvsO1tT3-NAerQb_wrBeSQleOn1P-lOj2bw5rxKygRUAmnyBSDvaW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677318315</pqid></control><display><type>article</type><title>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mohammed, Onimode Bayo ; Kolo, Alhassan John ; Solomon, Adepoju A</creator><creatorcontrib>Mohammed, Onimode Bayo ; Kolo, Alhassan John ; Solomon, Adepoju A</creatorcontrib><description>The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.</description><identifier>ISSN: 1694-0814</identifier><identifier>EISSN: 1694-0784</identifier><language>eng</language><publisher>Mahebourg: International Journal of Computer Science Issues (IJCSI)</publisher><subject>Automotive components ; Autoregressive processes ; Computer science ; Computer simulation ; Effectiveness ; Forecasting ; Inflation ; Mathematical models ; Neural networks</subject><ispartof>International journal of computer science issues, 2015-03, Vol.12 (2), p.260-260</ispartof><rights>Copyright International Journal of Computer Science Issues (IJCSI) Mar 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Mohammed, Onimode Bayo</creatorcontrib><creatorcontrib>Kolo, Alhassan John</creatorcontrib><creatorcontrib>Solomon, Adepoju A</creatorcontrib><title>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</title><title>International journal of computer science issues</title><description>The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.</description><subject>Automotive components</subject><subject>Autoregressive processes</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Effectiveness</subject><subject>Forecasting</subject><subject>Inflation</subject><subject>Mathematical models</subject><subject>Neural networks</subject><issn>1694-0814</issn><issn>1694-0784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUE1PwzAMrRBITGP_IRKXcahUt2mSHquKwaQBUhnnyW3dqaNrRpIyceG3k_FxwQc_6_nJfvZZMAGR8TCSip__1Qr4ZTCzdhf54KkAoSbBZ6H3BzToundiz25sPphu2XJoe0_pgZXoyLKFNlSjdd2wZS_2lBdETejpI5qG5cZ1bVd32LNHGs03uKM2r5bh4Nuj06ykrSFrT2vmeXnDHnRDvb0KLlrsLc1-cRqsF7fr4j5cPd0ti3wVHgRAWLVRncg0zeKkqjlUKs64zBRHLjJ_FZcxUSw5QUqVl0kEJaRqAGKs0RtPpsH8Z-zB6LeRrNvsO1tT3-NAerQb_wrBeSQleOn1P-lOj2bw5rxKygRUAmnyBSDvaW8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Mohammed, Onimode Bayo</creator><creator>Kolo, Alhassan John</creator><creator>Solomon, Adepoju A</creator><general>International Journal of Computer Science Issues (IJCSI)</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20150301</creationdate><title>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</title><author>Mohammed, Onimode Bayo ; Kolo, Alhassan John ; Solomon, Adepoju A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-bf0c3755923bc41b82947984a469814472ee274e15eb7557a18678d112acaeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive components</topic><topic>Autoregressive processes</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Effectiveness</topic><topic>Forecasting</topic><topic>Inflation</topic><topic>Mathematical models</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Onimode Bayo</creatorcontrib><creatorcontrib>Kolo, Alhassan John</creatorcontrib><creatorcontrib>Solomon, Adepoju A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer science issues</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Onimode Bayo</au><au>Kolo, Alhassan John</au><au>Solomon, Adepoju A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models</atitle><jtitle>International journal of computer science issues</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>12</volume><issue>2</issue><spage>260</spage><epage>260</epage><pages>260-260</pages><issn>1694-0814</issn><eissn>1694-0784</eissn><abstract>The paper examines the efficacy of neural networks application for inflation forecasting. In a simulated out-of-model forecasting investigation using recent Nigeria inflation rate data obtained from the appropriate authorities, the neural networks did better than univariate autoregressive models on normal rate for short periods of quarter one and quarter two; quarter one and quarter three; and quarter one and quarter four. A clear-cut condition of the model of neural network and specialized evaluation trial from the neural networks literature exemplify the important roles in the achievement of the feed-forward neural network model.</abstract><cop>Mahebourg</cop><pub>International Journal of Computer Science Issues (IJCSI)</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1694-0814 |
ispartof | International journal of computer science issues, 2015-03, Vol.12 (2), p.260-260 |
issn | 1694-0814 1694-0784 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686440771 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Automotive components Autoregressive processes Computer science Computer simulation Effectiveness Forecasting Inflation Mathematical models Neural networks |
title | Comparative Study of Inflation Rates Forecasting Using Feed-Forward Artificial Neural Networks and Auto Regressive (AR) Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Inflation%20Rates%20Forecasting%20Using%20Feed-Forward%20Artificial%20Neural%20Networks%20and%20Auto%20Regressive%20(AR)%20Models&rft.jtitle=International%20journal%20of%20computer%20science%20issues&rft.au=Mohammed,%20Onimode%20Bayo&rft.date=2015-03-01&rft.volume=12&rft.issue=2&rft.spage=260&rft.epage=260&rft.pages=260-260&rft.issn=1694-0814&rft.eissn=1694-0784&rft_id=info:doi/&rft_dat=%3Cproquest%3E3670864761%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677318315&rft_id=info:pmid/&rfr_iscdi=true |