Dynamic Susceptibility of a System
This article introduces research results by members of the Chair for Applied Mathematics, Tomsk Polytechnic University, who are also members of the scientific school of Development of Physical Foundations of Software for Energetic and Information Representation of Functional Characteristics of an Or...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.378-381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | Mechanical Engineering, Automation and Control Systems |
container_start_page | 378 |
container_title | Applied Mechanics and Materials |
container_volume | 756 |
creator | Gerget, Olga M. Kochegurov, Vladimir A. Titarenko, Ekaterina Y. |
description | This article introduces research results by members of the Chair for Applied Mathematics, Tomsk Polytechnic University, who are also members of the scientific school of Development of Physical Foundations of Software for Energetic and Information Representation of Functional Characteristics of an Organism for Medical and Preventive Tasks. In this article development of a universal mathematical apparatus to solve the tasks of monitoring, adaptation and regulation is described. To evaluate severity of change in a state vector, which describes mutual dynamic interactions among state variables of a system, geometric means of the vector and its deviation rate are used. Basic principles of assessment of dynamic susceptibility in systems are given. Coefficients that represent deviation of state variables from equilibrium values are described. Ability of regulatory mechanisms of a system to assure its stable functioning is explained. |
doi_str_mv | 10.4028/www.scientific.net/AMM.756.378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686440278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686440278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2878-ecf437029fb4c7946ae1c80c984708927eec69697a081c91f8957fdd198ec8093</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMP0Fb_w6AgbmaaTDK5yUYs9QktLqrrkKYJpkxn6mSGMv_e2AqKK1d3cT_OOXwIXRGcMZyL0Xa7zYLxtmq98yarbDsaz2YZFDyjIA7QKeE8T4GJ_BANKKaCFgwDO9o9cCop5SdoEMIKY84IE6fo4q6v9NqbZN4FYzetX_jSt31Su0Qn8z60dn2Gjp0ugz3_vkP09nD_OnlKpy-Pz5PxNDW5AJFa4xgFnEu3YAYk49oSI7CRggEWMgdrDZdcgsaCGEmckAW45ZJIYSMn6RBd73M3Tf3R2dCqtY-bylJXtu6CIlxwFjWAiOjlH3RVd00V10UKoMCcUojUzZ4yTR1CY53aNH6tm14RrL58quhT_fhU0aeKPlX0qeiu5nYf0Da6iirM-6-e_0V8ArGagmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677506337</pqid></control><display><type>article</type><title>Dynamic Susceptibility of a System</title><source>Scientific.net Journals</source><creator>Gerget, Olga M. ; Kochegurov, Vladimir A. ; Titarenko, Ekaterina Y.</creator><creatorcontrib>Gerget, Olga M. ; Kochegurov, Vladimir A. ; Titarenko, Ekaterina Y.</creatorcontrib><description>This article introduces research results by members of the Chair for Applied Mathematics, Tomsk Polytechnic University, who are also members of the scientific school of Development of Physical Foundations of Software for Energetic and Information Representation of Functional Characteristics of an Organism for Medical and Preventive Tasks. In this article development of a universal mathematical apparatus to solve the tasks of monitoring, adaptation and regulation is described. To evaluate severity of change in a state vector, which describes mutual dynamic interactions among state variables of a system, geometric means of the vector and its deviation rate are used. Basic principles of assessment of dynamic susceptibility in systems are given. Coefficients that represent deviation of state variables from equilibrium values are described. Ability of regulatory mechanisms of a system to assure its stable functioning is explained.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038354074</identifier><identifier>ISBN: 9783038354079</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.756.378</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Assessments ; Computer programs ; Deviation ; Dynamic tests ; Dynamical systems ; Dynamics ; Mathematical analysis ; Tasks</subject><ispartof>Applied Mechanics and Materials, 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.378-381</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2878-ecf437029fb4c7946ae1c80c984708927eec69697a081c91f8957fdd198ec8093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3793?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gerget, Olga M.</creatorcontrib><creatorcontrib>Kochegurov, Vladimir A.</creatorcontrib><creatorcontrib>Titarenko, Ekaterina Y.</creatorcontrib><title>Dynamic Susceptibility of a System</title><title>Applied Mechanics and Materials</title><description>This article introduces research results by members of the Chair for Applied Mathematics, Tomsk Polytechnic University, who are also members of the scientific school of Development of Physical Foundations of Software for Energetic and Information Representation of Functional Characteristics of an Organism for Medical and Preventive Tasks. In this article development of a universal mathematical apparatus to solve the tasks of monitoring, adaptation and regulation is described. To evaluate severity of change in a state vector, which describes mutual dynamic interactions among state variables of a system, geometric means of the vector and its deviation rate are used. Basic principles of assessment of dynamic susceptibility in systems are given. Coefficients that represent deviation of state variables from equilibrium values are described. Ability of regulatory mechanisms of a system to assure its stable functioning is explained.</description><subject>Assessments</subject><subject>Computer programs</subject><subject>Deviation</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Tasks</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038354074</isbn><isbn>9783038354079</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLAzEUhYMP0Fb_w6AgbmaaTDK5yUYs9QktLqrrkKYJpkxn6mSGMv_e2AqKK1d3cT_OOXwIXRGcMZyL0Xa7zYLxtmq98yarbDsaz2YZFDyjIA7QKeE8T4GJ_BANKKaCFgwDO9o9cCop5SdoEMIKY84IE6fo4q6v9NqbZN4FYzetX_jSt31Su0Qn8z60dn2Gjp0ugz3_vkP09nD_OnlKpy-Pz5PxNDW5AJFa4xgFnEu3YAYk49oSI7CRggEWMgdrDZdcgsaCGEmckAW45ZJIYSMn6RBd73M3Tf3R2dCqtY-bylJXtu6CIlxwFjWAiOjlH3RVd00V10UKoMCcUojUzZ4yTR1CY53aNH6tm14RrL58quhT_fhU0aeKPlX0qeiu5nYf0Da6iirM-6-e_0V8ArGagmo</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Gerget, Olga M.</creator><creator>Kochegurov, Vladimir A.</creator><creator>Titarenko, Ekaterina Y.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150401</creationdate><title>Dynamic Susceptibility of a System</title><author>Gerget, Olga M. ; Kochegurov, Vladimir A. ; Titarenko, Ekaterina Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2878-ecf437029fb4c7946ae1c80c984708927eec69697a081c91f8957fdd198ec8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assessments</topic><topic>Computer programs</topic><topic>Deviation</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerget, Olga M.</creatorcontrib><creatorcontrib>Kochegurov, Vladimir A.</creatorcontrib><creatorcontrib>Titarenko, Ekaterina Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerget, Olga M.</au><au>Kochegurov, Vladimir A.</au><au>Titarenko, Ekaterina Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Susceptibility of a System</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>756</volume><issue>Mechanical Engineering, Automation and Control Systems</issue><spage>378</spage><epage>381</epage><pages>378-381</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038354074</isbn><isbn>9783038354079</isbn><abstract>This article introduces research results by members of the Chair for Applied Mathematics, Tomsk Polytechnic University, who are also members of the scientific school of Development of Physical Foundations of Software for Energetic and Information Representation of Functional Characteristics of an Organism for Medical and Preventive Tasks. In this article development of a universal mathematical apparatus to solve the tasks of monitoring, adaptation and regulation is described. To evaluate severity of change in a state vector, which describes mutual dynamic interactions among state variables of a system, geometric means of the vector and its deviation rate are used. Basic principles of assessment of dynamic susceptibility in systems are given. Coefficients that represent deviation of state variables from equilibrium values are described. Ability of regulatory mechanisms of a system to assure its stable functioning is explained.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.756.378</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2015-04, Vol.756 (Mechanical Engineering, Automation and Control Systems), p.378-381 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686440278 |
source | Scientific.net Journals |
subjects | Assessments Computer programs Deviation Dynamic tests Dynamical systems Dynamics Mathematical analysis Tasks |
title | Dynamic Susceptibility of a System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Susceptibility%20of%20a%20System&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Gerget,%20Olga%20M.&rft.date=2015-04-01&rft.volume=756&rft.issue=Mechanical%20Engineering,%20Automation%20and%20Control%20Systems&rft.spage=378&rft.epage=381&rft.pages=378-381&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038354074&rft.isbn_list=9783038354079&rft_id=info:doi/10.4028/www.scientific.net/AMM.756.378&rft_dat=%3Cproquest_cross%3E1686440278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677506337&rft_id=info:pmid/&rfr_iscdi=true |