Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry

Extraction of customer behavioral patterns is a complex task and widely studied for various industrial applications under different heading viz., customer retention management, business intelligence and data mining. In this paper, authors experimented to extract the behavioral patterns for customer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and information technologies : CIT 2012-01, Vol.12 (1), p.49-60
Hauptverfasser: Sree Hari Rao, V., Jonnalagedda, Murthy V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 49
container_title Cybernetics and information technologies : CIT
container_volume 12
creator Sree Hari Rao, V.
Jonnalagedda, Murthy V.
description Extraction of customer behavioral patterns is a complex task and widely studied for various industrial applications under different heading viz., customer retention management, business intelligence and data mining. In this paper, authors experimented to extract the behavioral patterns for customer retention in Health care insurance. Initially, the customers are classified into three general categories - stable, unstable and oscillatory. To extract the patterns the concept of Novel index tree (a variant of K-d tree) clubbed with K-Nearest Neighbor algorithm is proposed for efficient classification of data, as well as outliers and the concept of insurance dynamics is proposed for analyzing customer behavioral patterns
doi_str_mv 10.2478/cait-2012-0004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686432283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686432283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-9d5529ebae0c1bdfe3db571ecb3cb323624b9773a2e4769d28415c4fbe92e11a3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhosoKOrVc8CLl2omSZv2uKwfu7AiynoOaTp1o7vpmqTg3vwP_kN_ia0rCsLAzOF5X4YnSU6AnjMhiwujbUwZBZZSSsVOcgAcRCpoAbvfN6SlpGw_OQ7hmQ5IyaHIDpJm6kLntTNILjdOr6wJ5PP9g4zIpY6a3Fpn3RMZrde-1WZBmtaTcRdiu0JPHjCii7Z1xDoyQb2MCzLWHslf59TVPe03R8leo5cBj3_2YfJ4fTUfT9LZ3c10PJqlhssipmWdZazESiM1UNUN8rrKJKCpeD-M50xUpZRcMxQyL2tWCMiMaCosGQJofpicbXv7f187DFGtbDC4XGqHbRcU5EUuOGMF79HTf-hz23nXf6c4ZJkUJQPRU-dbyvg2BI-NWnu70n6jgKrBvBrMq8G8GrT2gXQbsCHi2y-t_YvKJZeZup8LNb8GKiZCKM6_AOE5hdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155749214</pqid></control><display><type>article</type><title>Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Sree Hari Rao, V. ; Jonnalagedda, Murthy V.</creator><creatorcontrib>Sree Hari Rao, V. ; Jonnalagedda, Murthy V.</creatorcontrib><description>Extraction of customer behavioral patterns is a complex task and widely studied for various industrial applications under different heading viz., customer retention management, business intelligence and data mining. In this paper, authors experimented to extract the behavioral patterns for customer retention in Health care insurance. Initially, the customers are classified into three general categories - stable, unstable and oscillatory. To extract the patterns the concept of Novel index tree (a variant of K-d tree) clubbed with K-Nearest Neighbor algorithm is proposed for efficient classification of data, as well as outliers and the concept of insurance dynamics is proposed for analyzing customer behavioral patterns</description><identifier>ISSN: 1311-9702</identifier><identifier>EISSN: 1314-4081</identifier><identifier>DOI: 10.2478/cait-2012-0004</identifier><language>eng</language><publisher>Sofia: Versita</publisher><subject>Classification ; Customer retention ; Data mining ; Dynamic tests ; Dynamics ; Health care ; Insurance ; Insurance dynamics ; K-d tree ; KNN ; Novel Index tree ; Tasks ; Trees</subject><ispartof>Cybernetics and information technologies : CIT, 2012-01, Vol.12 (1), p.49-60</ispartof><rights>20120101.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-9d5529ebae0c1bdfe3db571ecb3cb323624b9773a2e4769d28415c4fbe92e11a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Sree Hari Rao, V.</creatorcontrib><creatorcontrib>Jonnalagedda, Murthy V.</creatorcontrib><title>Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry</title><title>Cybernetics and information technologies : CIT</title><description>Extraction of customer behavioral patterns is a complex task and widely studied for various industrial applications under different heading viz., customer retention management, business intelligence and data mining. In this paper, authors experimented to extract the behavioral patterns for customer retention in Health care insurance. Initially, the customers are classified into three general categories - stable, unstable and oscillatory. To extract the patterns the concept of Novel index tree (a variant of K-d tree) clubbed with K-Nearest Neighbor algorithm is proposed for efficient classification of data, as well as outliers and the concept of insurance dynamics is proposed for analyzing customer behavioral patterns</description><subject>Classification</subject><subject>Customer retention</subject><subject>Data mining</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Health care</subject><subject>Insurance</subject><subject>Insurance dynamics</subject><subject>K-d tree</subject><subject>KNN</subject><subject>Novel Index tree</subject><subject>Tasks</subject><subject>Trees</subject><issn>1311-9702</issn><issn>1314-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LxDAQhosoKOrVc8CLl2omSZv2uKwfu7AiynoOaTp1o7vpmqTg3vwP_kN_ia0rCsLAzOF5X4YnSU6AnjMhiwujbUwZBZZSSsVOcgAcRCpoAbvfN6SlpGw_OQ7hmQ5IyaHIDpJm6kLntTNILjdOr6wJ5PP9g4zIpY6a3Fpn3RMZrde-1WZBmtaTcRdiu0JPHjCii7Z1xDoyQb2MCzLWHslf59TVPe03R8leo5cBj3_2YfJ4fTUfT9LZ3c10PJqlhssipmWdZazESiM1UNUN8rrKJKCpeD-M50xUpZRcMxQyL2tWCMiMaCosGQJofpicbXv7f187DFGtbDC4XGqHbRcU5EUuOGMF79HTf-hz23nXf6c4ZJkUJQPRU-dbyvg2BI-NWnu70n6jgKrBvBrMq8G8GrT2gXQbsCHi2y-t_YvKJZeZup8LNb8GKiZCKM6_AOE5hdg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Sree Hari Rao, V.</creator><creator>Jonnalagedda, Murthy V.</creator><general>Versita</general><general>De Gruyter Poland</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry</title><author>Sree Hari Rao, V. ; Jonnalagedda, Murthy V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-9d5529ebae0c1bdfe3db571ecb3cb323624b9773a2e4769d28415c4fbe92e11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Customer retention</topic><topic>Data mining</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Health care</topic><topic>Insurance</topic><topic>Insurance dynamics</topic><topic>K-d tree</topic><topic>KNN</topic><topic>Novel Index tree</topic><topic>Tasks</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sree Hari Rao, V.</creatorcontrib><creatorcontrib>Jonnalagedda, Murthy V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and information technologies : CIT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sree Hari Rao, V.</au><au>Jonnalagedda, Murthy V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry</atitle><jtitle>Cybernetics and information technologies : CIT</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>12</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>1311-9702</issn><eissn>1314-4081</eissn><abstract>Extraction of customer behavioral patterns is a complex task and widely studied for various industrial applications under different heading viz., customer retention management, business intelligence and data mining. In this paper, authors experimented to extract the behavioral patterns for customer retention in Health care insurance. Initially, the customers are classified into three general categories - stable, unstable and oscillatory. To extract the patterns the concept of Novel index tree (a variant of K-d tree) clubbed with K-Nearest Neighbor algorithm is proposed for efficient classification of data, as well as outliers and the concept of insurance dynamics is proposed for analyzing customer behavioral patterns</abstract><cop>Sofia</cop><pub>Versita</pub><doi>10.2478/cait-2012-0004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1311-9702
ispartof Cybernetics and information technologies : CIT, 2012-01, Vol.12 (1), p.49-60
issn 1311-9702
1314-4081
language eng
recordid cdi_proquest_miscellaneous_1686432283
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Classification
Customer retention
Data mining
Dynamic tests
Dynamics
Health care
Insurance
Insurance dynamics
K-d tree
KNN
Novel Index tree
Tasks
Trees
title Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insurance%20Dynamics%20%E2%80%93%20A%20Data%20Mining%20Approach%20for%20Customer%20Retention%20in%20Health%20Care%20Insurance%20Industry&rft.jtitle=Cybernetics%20and%20information%20technologies%20:%20CIT&rft.au=Sree%20Hari%20Rao,%20V.&rft.date=2012-01-01&rft.volume=12&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=1311-9702&rft.eissn=1314-4081&rft_id=info:doi/10.2478/cait-2012-0004&rft_dat=%3Cproquest_cross%3E1686432283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155749214&rft_id=info:pmid/&rfr_iscdi=true