Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer
This paper proposes a reliability constrained unit commitment problem with combined hydro and thermal generation embedded (RCHTUC), solved by a SLGSO (self-learning group search optimizer). The RCHTUC problem aims at minimizing the sum of fuel costs and start-up costs of thermal plants subject to va...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2015-03, Vol.81, p.245-254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | Energy (Oxford) |
container_volume | 81 |
creator | Zheng, J.H. Chen, J.J. Wu, Q.H. Jing, Z.X. |
description | This paper proposes a reliability constrained unit commitment problem with combined hydro and thermal generation embedded (RCHTUC), solved by a SLGSO (self-learning group search optimizer). The RCHTUC problem aims at minimizing the sum of fuel costs and start-up costs of thermal plants subject to various operation constraints. Furthermore, the problem takes into account the combination of hydro and thermal systems and the reliability constraints in hydrothermal power systems so as to respond to unforeseen outages and changes of load demands. In order to solve the RCHTUC problem, a SLGSO is developed from the GSO (group search optimizer), applying adaptive covariance matrix to design the optimum searching strategy and employing Lévy flights to increase the diversity of group. This paper reports on the simulation results obtained by the proposed method. The results are compared with those obtained by other methods on different hydrothermal systems over the scheduling horizon. The simulation results demonstrate the efficiency of the SLGSO for tackling the RCHTUC problem.
•A reliability constrained unit commitment for hydrothermal systems is modeled.•A self-learning group search optimizer is proposed to optimize the problem.•The method can find a superior solution compared with other reported results.•The method contributes to significant energy saving in hydrothermal power systems. |
doi_str_mv | 10.1016/j.energy.2014.12.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686428659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544214014030</els_id><sourcerecordid>1680451377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-66877e569999285ee6aef1d747a484be36749fa976aa163270fd268c2ac3a7703</originalsourceid><addsrcrecordid>eNqNUU2P1DAM7QEkll3-AYccubQkaZq0FyS04ktaaSUE58iTuDMetcmQZEDDD-B3kzKcET7Ysv38bOs1zUvBO8GFfn3sMGDaXzrJheqE7HivnzQ31fN2UEo-a57nfOScD-M03TS_PuNCsKOFyoW5GHJJQAE9OwcqtbCuVFYMhf2gctjy3Z_u4eJTZBA8KwdMKyxsv62FQjEwXHfo_caRKexZxmVuF4QUtmyf4vlUa5DcgcVToZV-Yrprns6wZHzxN942X9-_-3L_sX14_PDp_u1D6-rppdV6NAYHPVWT44CoAWfhjTKgRrXDXhs1zTAZDSB0Lw2fvdSjk-B6MIb3t82rK-8pxW9nzMWulB0uCwSM52yFHrWSox6m_4FyNYjemApVV6hLMeeEsz0lWiFdrOB2U8Ue7VUVu6lihbRVjzr25jqG9ePvhMlmRxgcekroivWR_k3wG4cBnMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680451377</pqid></control><display><type>article</type><title>Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zheng, J.H. ; Chen, J.J. ; Wu, Q.H. ; Jing, Z.X.</creator><creatorcontrib>Zheng, J.H. ; Chen, J.J. ; Wu, Q.H. ; Jing, Z.X.</creatorcontrib><description>This paper proposes a reliability constrained unit commitment problem with combined hydro and thermal generation embedded (RCHTUC), solved by a SLGSO (self-learning group search optimizer). The RCHTUC problem aims at minimizing the sum of fuel costs and start-up costs of thermal plants subject to various operation constraints. Furthermore, the problem takes into account the combination of hydro and thermal systems and the reliability constraints in hydrothermal power systems so as to respond to unforeseen outages and changes of load demands. In order to solve the RCHTUC problem, a SLGSO is developed from the GSO (group search optimizer), applying adaptive covariance matrix to design the optimum searching strategy and employing Lévy flights to increase the diversity of group. This paper reports on the simulation results obtained by the proposed method. The results are compared with those obtained by other methods on different hydrothermal systems over the scheduling horizon. The simulation results demonstrate the efficiency of the SLGSO for tackling the RCHTUC problem.
•A reliability constrained unit commitment for hydrothermal systems is modeled.•A self-learning group search optimizer is proposed to optimize the problem.•The method can find a superior solution compared with other reported results.•The method contributes to significant energy saving in hydrothermal power systems.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2014.12.036</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive covariance matrix ; Constraints ; Costs ; Design engineering ; Group search optimizer ; Hydrothermal unit commitment ; Lévy flights ; Optimization ; Searching ; Simulation ; Spinning reserve ; Strategy ; Unit commitment</subject><ispartof>Energy (Oxford), 2015-03, Vol.81, p.245-254</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-66877e569999285ee6aef1d747a484be36749fa976aa163270fd268c2ac3a7703</citedby><cites>FETCH-LOGICAL-c442t-66877e569999285ee6aef1d747a484be36749fa976aa163270fd268c2ac3a7703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2014.12.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zheng, J.H.</creatorcontrib><creatorcontrib>Chen, J.J.</creatorcontrib><creatorcontrib>Wu, Q.H.</creatorcontrib><creatorcontrib>Jing, Z.X.</creatorcontrib><title>Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer</title><title>Energy (Oxford)</title><description>This paper proposes a reliability constrained unit commitment problem with combined hydro and thermal generation embedded (RCHTUC), solved by a SLGSO (self-learning group search optimizer). The RCHTUC problem aims at minimizing the sum of fuel costs and start-up costs of thermal plants subject to various operation constraints. Furthermore, the problem takes into account the combination of hydro and thermal systems and the reliability constraints in hydrothermal power systems so as to respond to unforeseen outages and changes of load demands. In order to solve the RCHTUC problem, a SLGSO is developed from the GSO (group search optimizer), applying adaptive covariance matrix to design the optimum searching strategy and employing Lévy flights to increase the diversity of group. This paper reports on the simulation results obtained by the proposed method. The results are compared with those obtained by other methods on different hydrothermal systems over the scheduling horizon. The simulation results demonstrate the efficiency of the SLGSO for tackling the RCHTUC problem.
•A reliability constrained unit commitment for hydrothermal systems is modeled.•A self-learning group search optimizer is proposed to optimize the problem.•The method can find a superior solution compared with other reported results.•The method contributes to significant energy saving in hydrothermal power systems.</description><subject>Adaptive covariance matrix</subject><subject>Constraints</subject><subject>Costs</subject><subject>Design engineering</subject><subject>Group search optimizer</subject><subject>Hydrothermal unit commitment</subject><subject>Lévy flights</subject><subject>Optimization</subject><subject>Searching</subject><subject>Simulation</subject><subject>Spinning reserve</subject><subject>Strategy</subject><subject>Unit commitment</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2P1DAM7QEkll3-AYccubQkaZq0FyS04ktaaSUE58iTuDMetcmQZEDDD-B3kzKcET7Ysv38bOs1zUvBO8GFfn3sMGDaXzrJheqE7HivnzQ31fN2UEo-a57nfOScD-M03TS_PuNCsKOFyoW5GHJJQAE9OwcqtbCuVFYMhf2gctjy3Z_u4eJTZBA8KwdMKyxsv62FQjEwXHfo_caRKexZxmVuF4QUtmyf4vlUa5DcgcVToZV-Yrprns6wZHzxN942X9-_-3L_sX14_PDp_u1D6-rppdV6NAYHPVWT44CoAWfhjTKgRrXDXhs1zTAZDSB0Lw2fvdSjk-B6MIb3t82rK-8pxW9nzMWulB0uCwSM52yFHrWSox6m_4FyNYjemApVV6hLMeeEsz0lWiFdrOB2U8Ue7VUVu6lihbRVjzr25jqG9ePvhMlmRxgcekroivWR_k3wG4cBnMk</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Zheng, J.H.</creator><creator>Chen, J.J.</creator><creator>Wu, Q.H.</creator><creator>Jing, Z.X.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150301</creationdate><title>Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer</title><author>Zheng, J.H. ; Chen, J.J. ; Wu, Q.H. ; Jing, Z.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-66877e569999285ee6aef1d747a484be36749fa976aa163270fd268c2ac3a7703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive covariance matrix</topic><topic>Constraints</topic><topic>Costs</topic><topic>Design engineering</topic><topic>Group search optimizer</topic><topic>Hydrothermal unit commitment</topic><topic>Lévy flights</topic><topic>Optimization</topic><topic>Searching</topic><topic>Simulation</topic><topic>Spinning reserve</topic><topic>Strategy</topic><topic>Unit commitment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, J.H.</creatorcontrib><creatorcontrib>Chen, J.J.</creatorcontrib><creatorcontrib>Wu, Q.H.</creatorcontrib><creatorcontrib>Jing, Z.X.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, J.H.</au><au>Chen, J.J.</au><au>Wu, Q.H.</au><au>Jing, Z.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer</atitle><jtitle>Energy (Oxford)</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>81</volume><spage>245</spage><epage>254</epage><pages>245-254</pages><issn>0360-5442</issn><abstract>This paper proposes a reliability constrained unit commitment problem with combined hydro and thermal generation embedded (RCHTUC), solved by a SLGSO (self-learning group search optimizer). The RCHTUC problem aims at minimizing the sum of fuel costs and start-up costs of thermal plants subject to various operation constraints. Furthermore, the problem takes into account the combination of hydro and thermal systems and the reliability constraints in hydrothermal power systems so as to respond to unforeseen outages and changes of load demands. In order to solve the RCHTUC problem, a SLGSO is developed from the GSO (group search optimizer), applying adaptive covariance matrix to design the optimum searching strategy and employing Lévy flights to increase the diversity of group. This paper reports on the simulation results obtained by the proposed method. The results are compared with those obtained by other methods on different hydrothermal systems over the scheduling horizon. The simulation results demonstrate the efficiency of the SLGSO for tackling the RCHTUC problem.
•A reliability constrained unit commitment for hydrothermal systems is modeled.•A self-learning group search optimizer is proposed to optimize the problem.•The method can find a superior solution compared with other reported results.•The method contributes to significant energy saving in hydrothermal power systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2014.12.036</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2015-03, Vol.81, p.245-254 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686428659 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adaptive covariance matrix Constraints Costs Design engineering Group search optimizer Hydrothermal unit commitment Lévy flights Optimization Searching Simulation Spinning reserve Strategy Unit commitment |
title | Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20constrained%20unit%20commitment%20with%20combined%20hydro%20and%20thermal%20generation%20embedded%20using%20self-learning%20group%20search%20optimizer&rft.jtitle=Energy%20(Oxford)&rft.au=Zheng,%20J.H.&rft.date=2015-03-01&rft.volume=81&rft.spage=245&rft.epage=254&rft.pages=245-254&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2014.12.036&rft_dat=%3Cproquest_cross%3E1680451377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680451377&rft_id=info:pmid/&rft_els_id=S0360544214014030&rfr_iscdi=true |