Sequential quasi Monte Carlo

We derive and study sequential quasi Monte Carlo (SQMC), a class of algorithms obtained by introducing QMC point sets in particle filtering. SQMC is related to, and may be seen as an extension of, the array‐RQMC algorithm of L'Ecuyer and his colleagues. The complexity of SQMC is O{Nlog(N)}, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 2015-06, Vol.77 (3), p.509-579
Hauptverfasser: Gerber, Mathieu, Chopin, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 3
container_start_page 509
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 77
creator Gerber, Mathieu
Chopin, Nicolas
description We derive and study sequential quasi Monte Carlo (SQMC), a class of algorithms obtained by introducing QMC point sets in particle filtering. SQMC is related to, and may be seen as an extension of, the array‐RQMC algorithm of L'Ecuyer and his colleagues. The complexity of SQMC is O{Nlog(N)}, where N is the number of simulations at each iteration, and its error rate is smaller than the Monte Carlo rate OP(N−1/2). The only requirement to implement SQMC algorithms is the ability to write the simulation of particle xtn given xt−1n as a deterministic function of xt−1n and a fixed number of uniform variates. We show that SQMC is amenable to the same extensions as standard SMC, such as forward smoothing, backward smoothing and unbiased likelihood evaluation. In particular, SQMC may replace SMC within a particle Markov chain Monte Carlo algorithm. We establish several convergence results. We provide numerical evidence that SQMC may significantly outperform SMC in practical scenarios.
doi_str_mv 10.1111/rssb.12104
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686416884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686416884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5324-3ce9437d96202c464572848560a40e3c6d869f3a08a91c9d25113a725b0518363</originalsourceid><addsrcrecordid>eNp90TtPwzAQAOAIgUQpLMxIVGIBpMCdX7HHtkCLKA9REKNlUhcCoQE7AfrvcQh0YOAG27K-O53PUbSJcIAhDp339wdIENhS1EImklhJIZfDmQoVJwzJarTm_ROEEAltRVtj-1bZWZmZvPNWGZ91zotZaTt94_JiPVqZmtzbjZ-9Hd2eHN_0h_HocnDa747ilFPCYppaxWgyUYIASZlgPCGSSS7AMLA0FRMp1JQakEZhqiaEI1KTEH4PHCUVtB3tNXUfTa5fXfZi3FwXJtPD7kjXd4AMFOH8HYPdbeyrK0LnvtQvmU9tnpuZLSqvUUjBwiJZoDt_6FNRuVl4Sa0ACVGkVvuNSl3hvbPTRQcIuh6qroeqv4caMDb4I8vt_B-pr8fj3m9O3ORkvrSfixzjnnX4goTru4uBBnqlzo5ET9d-u_FTU2jz4DKvb8cEUEDdMgGgX-X-i80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680122924</pqid></control><display><type>article</type><title>Sequential quasi Monte Carlo</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Gerber, Mathieu ; Chopin, Nicolas</creator><creatorcontrib>Gerber, Mathieu ; Chopin, Nicolas</creatorcontrib><description>We derive and study sequential quasi Monte Carlo (SQMC), a class of algorithms obtained by introducing QMC point sets in particle filtering. SQMC is related to, and may be seen as an extension of, the array‐RQMC algorithm of L'Ecuyer and his colleagues. The complexity of SQMC is O{Nlog(N)}, where N is the number of simulations at each iteration, and its error rate is smaller than the Monte Carlo rate OP(N−1/2). The only requirement to implement SQMC algorithms is the ability to write the simulation of particle xtn given xt−1n as a deterministic function of xt−1n and a fixed number of uniform variates. We show that SQMC is amenable to the same extensions as standard SMC, such as forward smoothing, backward smoothing and unbiased likelihood evaluation. In particular, SQMC may replace SMC within a particle Markov chain Monte Carlo algorithm. We establish several convergence results. We provide numerical evidence that SQMC may significantly outperform SMC in practical scenarios.</description><identifier>ISSN: 1369-7412</identifier><identifier>ISSN: 0035-9246</identifier><identifier>EISSN: 1467-9868</identifier><identifier>EISSN: 0035-9246</identifier><identifier>DOI: 10.1111/rssb.12104</identifier><language>eng</language><publisher>Oxford: Royal Statistical Society</publisher><subject>Algorithms ; Array-randomized quasi Monte Carlo ; Economic analysis ; Low discrepancy ; Markov chain ; Markovian processes ; Mathematics ; Monte Carlo method ; Monte Carlo simulation ; Particle filtering ; Probability theory ; Quasi Monte Carlo ; Quasi Monte Carlo; Randomized quasi Monte Carlo; Sequential Monte Carlo ; Randomized quasi Monte Carlo ; Sequential Monte Carlo ; Simulation ; Statistical analysis ; Statistical methods ; Statistics ; Studies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 2015-06, Vol.77 (3), p.509-579</ispartof><rights>2015 Royal Statistical Society</rights><rights>Copyright © 2015 The Royal Statistical Society and Blackwell Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5324-3ce9437d96202c464572848560a40e3c6d869f3a08a91c9d25113a725b0518363</citedby><cites>FETCH-LOGICAL-c5324-3ce9437d96202c464572848560a40e3c6d869f3a08a91c9d25113a725b0518363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12104$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12104$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01409255$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerber, Mathieu</creatorcontrib><creatorcontrib>Chopin, Nicolas</creatorcontrib><title>Sequential quasi Monte Carlo</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><addtitle>J. R. Stat. Soc. B</addtitle><description>We derive and study sequential quasi Monte Carlo (SQMC), a class of algorithms obtained by introducing QMC point sets in particle filtering. SQMC is related to, and may be seen as an extension of, the array‐RQMC algorithm of L'Ecuyer and his colleagues. The complexity of SQMC is O{Nlog(N)}, where N is the number of simulations at each iteration, and its error rate is smaller than the Monte Carlo rate OP(N−1/2). The only requirement to implement SQMC algorithms is the ability to write the simulation of particle xtn given xt−1n as a deterministic function of xt−1n and a fixed number of uniform variates. We show that SQMC is amenable to the same extensions as standard SMC, such as forward smoothing, backward smoothing and unbiased likelihood evaluation. In particular, SQMC may replace SMC within a particle Markov chain Monte Carlo algorithm. We establish several convergence results. We provide numerical evidence that SQMC may significantly outperform SMC in practical scenarios.</description><subject>Algorithms</subject><subject>Array-randomized quasi Monte Carlo</subject><subject>Economic analysis</subject><subject>Low discrepancy</subject><subject>Markov chain</subject><subject>Markovian processes</subject><subject>Mathematics</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Particle filtering</subject><subject>Probability theory</subject><subject>Quasi Monte Carlo</subject><subject>Quasi Monte Carlo; Randomized quasi Monte Carlo; Sequential Monte Carlo</subject><subject>Randomized quasi Monte Carlo</subject><subject>Sequential Monte Carlo</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>1369-7412</issn><issn>0035-9246</issn><issn>1467-9868</issn><issn>0035-9246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90TtPwzAQAOAIgUQpLMxIVGIBpMCdX7HHtkCLKA9REKNlUhcCoQE7AfrvcQh0YOAG27K-O53PUbSJcIAhDp339wdIENhS1EImklhJIZfDmQoVJwzJarTm_ROEEAltRVtj-1bZWZmZvPNWGZ91zotZaTt94_JiPVqZmtzbjZ-9Hd2eHN_0h_HocnDa747ilFPCYppaxWgyUYIASZlgPCGSSS7AMLA0FRMp1JQakEZhqiaEI1KTEH4PHCUVtB3tNXUfTa5fXfZi3FwXJtPD7kjXd4AMFOH8HYPdbeyrK0LnvtQvmU9tnpuZLSqvUUjBwiJZoDt_6FNRuVl4Sa0ACVGkVvuNSl3hvbPTRQcIuh6qroeqv4caMDb4I8vt_B-pr8fj3m9O3ORkvrSfixzjnnX4goTru4uBBnqlzo5ET9d-u_FTU2jz4DKvb8cEUEDdMgGgX-X-i80</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Gerber, Mathieu</creator><creator>Chopin, Nicolas</creator><general>Royal Statistical Society</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201506</creationdate><title>Sequential quasi Monte Carlo</title><author>Gerber, Mathieu ; Chopin, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5324-3ce9437d96202c464572848560a40e3c6d869f3a08a91c9d25113a725b0518363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Array-randomized quasi Monte Carlo</topic><topic>Economic analysis</topic><topic>Low discrepancy</topic><topic>Markov chain</topic><topic>Markovian processes</topic><topic>Mathematics</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Particle filtering</topic><topic>Probability theory</topic><topic>Quasi Monte Carlo</topic><topic>Quasi Monte Carlo; Randomized quasi Monte Carlo; Sequential Monte Carlo</topic><topic>Randomized quasi Monte Carlo</topic><topic>Sequential Monte Carlo</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerber, Mathieu</creatorcontrib><creatorcontrib>Chopin, Nicolas</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerber, Mathieu</au><au>Chopin, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential quasi Monte Carlo</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><addtitle>J. R. Stat. Soc. B</addtitle><date>2015-06</date><risdate>2015</risdate><volume>77</volume><issue>3</issue><spage>509</spage><epage>579</epage><pages>509-579</pages><issn>1369-7412</issn><issn>0035-9246</issn><eissn>1467-9868</eissn><eissn>0035-9246</eissn><abstract>We derive and study sequential quasi Monte Carlo (SQMC), a class of algorithms obtained by introducing QMC point sets in particle filtering. SQMC is related to, and may be seen as an extension of, the array‐RQMC algorithm of L'Ecuyer and his colleagues. The complexity of SQMC is O{Nlog(N)}, where N is the number of simulations at each iteration, and its error rate is smaller than the Monte Carlo rate OP(N−1/2). The only requirement to implement SQMC algorithms is the ability to write the simulation of particle xtn given xt−1n as a deterministic function of xt−1n and a fixed number of uniform variates. We show that SQMC is amenable to the same extensions as standard SMC, such as forward smoothing, backward smoothing and unbiased likelihood evaluation. In particular, SQMC may replace SMC within a particle Markov chain Monte Carlo algorithm. We establish several convergence results. We provide numerical evidence that SQMC may significantly outperform SMC in practical scenarios.</abstract><cop>Oxford</cop><pub>Royal Statistical Society</pub><doi>10.1111/rssb.12104</doi><tpages>71</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 2015-06, Vol.77 (3), p.509-579
issn 1369-7412
0035-9246
1467-9868
0035-9246
language eng
recordid cdi_proquest_miscellaneous_1686416884
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Array-randomized quasi Monte Carlo
Economic analysis
Low discrepancy
Markov chain
Markovian processes
Mathematics
Monte Carlo method
Monte Carlo simulation
Particle filtering
Probability theory
Quasi Monte Carlo
Quasi Monte Carlo
Randomized quasi Monte Carlo
Sequential Monte Carlo
Randomized quasi Monte Carlo
Sequential Monte Carlo
Simulation
Statistical analysis
Statistical methods
Statistics
Studies
title Sequential quasi Monte Carlo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20quasi%20Monte%20Carlo&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Gerber,%20Mathieu&rft.date=2015-06&rft.volume=77&rft.issue=3&rft.spage=509&rft.epage=579&rft.pages=509-579&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12104&rft_dat=%3Cproquest_hal_p%3E1686416884%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680122924&rft_id=info:pmid/&rfr_iscdi=true