Measuring Risk in Fixed Income Portfolios using Yield Curve Models
We propose a novel approach to measure risk in fixed income portfolios in terms of value-at-risk (VaR). We obtain closed-form expressions for the vector of expected bond returns and for its covariance matrix based on a general class of dynamic factor models, including the dynamic versions of the Nel...
Gespeichert in:
Veröffentlicht in: | Computational economics 2015-06, Vol.46 (1), p.65-82 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Computational economics |
container_volume | 46 |
creator | Caldeira, João F. Moura, Guilherme V. Santos, André A. P. |
description | We propose a novel approach to measure risk in fixed income portfolios in terms of value-at-risk (VaR). We obtain closed-form expressions for the vector of expected bond returns and for its covariance matrix based on a general class of dynamic factor models, including the dynamic versions of the Nelson-Siegel and Svensson models, to compute the parametric VaR of a portfolio composed of fixed income securities. The proposed approach provides additional modeling flexibility as it can accommodate alternative specifications of the yield curve as well as alternative specifications of the conditional heteroskedasticity in bond returns. An empirical application involving a data set with 15 fixed income securities with different maturities indicate that the proposed approach delivers accurate VaR estimates. |
doi_str_mv | 10.1007/s10614-014-9438-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686416491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3683360531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-55abc2c36f5b4abab7a439aa18c960e61fb6a532928921ffbc2141898ac9813b3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4C7gxs1oXiaTTJZarBZaFNGFq5BJM5I6ndS8jujfO0NdiODicTfnXh6HkFNgF8CYukRgEkTG-tMiLzO1R0ZQKJ5prcQ-GTHNVaaY1ofkCHHFGCuA8xG5XniLXQrtK30M-EZDS6fh0y_prHVx7elDTNs6NiEi7XCgXoJvlnTSpQ9PF3HpGzwmB7Vt0J_85Jg8T2-eJnfZ_P52NrmaZ04Iuc2KwlaOu1zWRSVsZStlRa6thdJpybyEupK2yLnmpeZQ1z0MAkpdWqdLyKt8TM53u5sU3zuPW7MO6HzT2NbHDg3IUgqQQkOPnv1BV7FLbf_dQDFZaMUGCnaUSxEx-dpsUljb9GWAmcGq2Vk1vVUzWDWq7_BdBzeDNJ9-Lf9b-gb73HiL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680659701</pqid></control><display><type>article</type><title>Measuring Risk in Fixed Income Portfolios using Yield Curve Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Caldeira, João F. ; Moura, Guilherme V. ; Santos, André A. P.</creator><creatorcontrib>Caldeira, João F. ; Moura, Guilherme V. ; Santos, André A. P.</creatorcontrib><description>We propose a novel approach to measure risk in fixed income portfolios in terms of value-at-risk (VaR). We obtain closed-form expressions for the vector of expected bond returns and for its covariance matrix based on a general class of dynamic factor models, including the dynamic versions of the Nelson-Siegel and Svensson models, to compute the parametric VaR of a portfolio composed of fixed income securities. The proposed approach provides additional modeling flexibility as it can accommodate alternative specifications of the yield curve as well as alternative specifications of the conditional heteroskedasticity in bond returns. An empirical application involving a data set with 15 fixed income securities with different maturities indicate that the proposed approach delivers accurate VaR estimates.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-014-9438-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Dynamic models ; Economic models ; Economic statistics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Fixed incomes ; Income ; Interest rates ; Math Applications in Computer Science ; Modelling ; Monte Carlo simulation ; Operations Research/Decision Theory ; Portfolio analysis ; Portfolio management ; Securities issues ; Studies ; Value at risk ; Volatility ; Yield curve</subject><ispartof>Computational economics, 2015-06, Vol.46 (1), p.65-82</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-55abc2c36f5b4abab7a439aa18c960e61fb6a532928921ffbc2141898ac9813b3</citedby><cites>FETCH-LOGICAL-c446t-55abc2c36f5b4abab7a439aa18c960e61fb6a532928921ffbc2141898ac9813b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-014-9438-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-014-9438-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Caldeira, João F.</creatorcontrib><creatorcontrib>Moura, Guilherme V.</creatorcontrib><creatorcontrib>Santos, André A. P.</creatorcontrib><title>Measuring Risk in Fixed Income Portfolios using Yield Curve Models</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>We propose a novel approach to measure risk in fixed income portfolios in terms of value-at-risk (VaR). We obtain closed-form expressions for the vector of expected bond returns and for its covariance matrix based on a general class of dynamic factor models, including the dynamic versions of the Nelson-Siegel and Svensson models, to compute the parametric VaR of a portfolio composed of fixed income securities. The proposed approach provides additional modeling flexibility as it can accommodate alternative specifications of the yield curve as well as alternative specifications of the conditional heteroskedasticity in bond returns. An empirical application involving a data set with 15 fixed income securities with different maturities indicate that the proposed approach delivers accurate VaR estimates.</description><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Dynamic models</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Fixed incomes</subject><subject>Income</subject><subject>Interest rates</subject><subject>Math Applications in Computer Science</subject><subject>Modelling</subject><subject>Monte Carlo simulation</subject><subject>Operations Research/Decision Theory</subject><subject>Portfolio analysis</subject><subject>Portfolio management</subject><subject>Securities issues</subject><subject>Studies</subject><subject>Value at risk</subject><subject>Volatility</subject><subject>Yield curve</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4C7gxs1oXiaTTJZarBZaFNGFq5BJM5I6ndS8jujfO0NdiODicTfnXh6HkFNgF8CYukRgEkTG-tMiLzO1R0ZQKJ5prcQ-GTHNVaaY1ofkCHHFGCuA8xG5XniLXQrtK30M-EZDS6fh0y_prHVx7elDTNs6NiEi7XCgXoJvlnTSpQ9PF3HpGzwmB7Vt0J_85Jg8T2-eJnfZ_P52NrmaZ04Iuc2KwlaOu1zWRSVsZStlRa6thdJpybyEupK2yLnmpeZQ1z0MAkpdWqdLyKt8TM53u5sU3zuPW7MO6HzT2NbHDg3IUgqQQkOPnv1BV7FLbf_dQDFZaMUGCnaUSxEx-dpsUljb9GWAmcGq2Vk1vVUzWDWq7_BdBzeDNJ9-Lf9b-gb73HiL</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Caldeira, João F.</creator><creator>Moura, Guilherme V.</creator><creator>Santos, André A. P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150601</creationdate><title>Measuring Risk in Fixed Income Portfolios using Yield Curve Models</title><author>Caldeira, João F. ; Moura, Guilherme V. ; Santos, André A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-55abc2c36f5b4abab7a439aa18c960e61fb6a532928921ffbc2141898ac9813b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Dynamic models</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Fixed incomes</topic><topic>Income</topic><topic>Interest rates</topic><topic>Math Applications in Computer Science</topic><topic>Modelling</topic><topic>Monte Carlo simulation</topic><topic>Operations Research/Decision Theory</topic><topic>Portfolio analysis</topic><topic>Portfolio management</topic><topic>Securities issues</topic><topic>Studies</topic><topic>Value at risk</topic><topic>Volatility</topic><topic>Yield curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldeira, João F.</creatorcontrib><creatorcontrib>Moura, Guilherme V.</creatorcontrib><creatorcontrib>Santos, André A. P.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldeira, João F.</au><au>Moura, Guilherme V.</au><au>Santos, André A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Risk in Fixed Income Portfolios using Yield Curve Models</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>46</volume><issue>1</issue><spage>65</spage><epage>82</epage><pages>65-82</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>We propose a novel approach to measure risk in fixed income portfolios in terms of value-at-risk (VaR). We obtain closed-form expressions for the vector of expected bond returns and for its covariance matrix based on a general class of dynamic factor models, including the dynamic versions of the Nelson-Siegel and Svensson models, to compute the parametric VaR of a portfolio composed of fixed income securities. The proposed approach provides additional modeling flexibility as it can accommodate alternative specifications of the yield curve as well as alternative specifications of the conditional heteroskedasticity in bond returns. An empirical application involving a data set with 15 fixed income securities with different maturities indicate that the proposed approach delivers accurate VaR estimates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-014-9438-7</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2015-06, Vol.46 (1), p.65-82 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686416491 |
source | SpringerLink Journals - AutoHoldings |
subjects | Behavioral/Experimental Economics Computer Appl. in Social and Behavioral Sciences Dynamic models Economic models Economic statistics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Fixed incomes Income Interest rates Math Applications in Computer Science Modelling Monte Carlo simulation Operations Research/Decision Theory Portfolio analysis Portfolio management Securities issues Studies Value at risk Volatility Yield curve |
title | Measuring Risk in Fixed Income Portfolios using Yield Curve Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Risk%20in%20Fixed%20Income%20Portfolios%20using%20Yield%20Curve%20Models&rft.jtitle=Computational%20economics&rft.au=Caldeira,%20Jo%C3%A3o%20F.&rft.date=2015-06-01&rft.volume=46&rft.issue=1&rft.spage=65&rft.epage=82&rft.pages=65-82&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-014-9438-7&rft_dat=%3Cproquest_cross%3E3683360531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680659701&rft_id=info:pmid/&rfr_iscdi=true |