Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions
Increasing temperatures due to changing global climate are interfering with plant–pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography–mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid‐base...
Gespeichert in:
Veröffentlicht in: | Plant, cell and environment cell and environment, 2015-07, Vol.38 (7), p.1333-1346 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1346 |
---|---|
container_issue | 7 |
container_start_page | 1333 |
container_title | Plant, cell and environment |
container_volume | 38 |
creator | CNA'ANI, ALON MÜHLEMANN, JOELLE K. RAVID, JASMIN MASCI, TANIA KLEMPIEN, ANTJE NGUYEN, THUONG T. H. DUDAREVA, NATALIA PICHERSKY, ERAN VAINSTEIN, ALEXANDER |
description | Increasing temperatures due to changing global climate are interfering with plant–pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography–mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid‐based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down‐regulation of scent‐related structural gene expression from both phenylpropanoid and shikimate pathways, and up‐regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic ‘Blue Spark’ plants overexpressing CaMV 35S‐driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long‐term high‐temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up‐regulation of transcription might negate the adverse effects of temperature on scent production.
We demonstrate that petunia flowers produce less volatile phenylpropanoid compounds, in both scent bouquets and internal pools, in response to elevated temperatures. We reveal that the decrease in floral scent is correlated with reduced transcript levels of scent‐related genes, and that the adverse effect of high temperature can be negated by expressing transcriptional up‐regulators. We believe that the conclusions and implications drawn from the original data presented in our manuscript will be of particular interest to a broad spectrum of your readers, particularly in view of recent changes in global climate and the risk of environmental disruption of plant–pollinator mutualism. |
doi_str_mv | 10.1111/pce.12486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686412611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3702903251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-43d3491a0534c08c311030fc7e1e084bb15696095c417a0713f2b4c1e0d6bb793</originalsourceid><addsrcrecordid>eNp1kbtO7DAQhi0Egj1AwQsgSzScIuCJHScp0YrLkZCggDpynMmuUS6L7YDS0dLR8UC8CU-C9yxQIOFiLM1882tmfkL2gB1BeMcLjUcQi0yukQlwmUScCbZOJgwEi9I0hy3yx7k7xkIizTfJVpwIFnPIJ6S9Rj90Rr0_Pb-9hjAfS2sqReumt6qhTmPn6cL21aC96TtqHO1wprx5wGakqq5Re6xoOdK5mc3fn148tgu0yg8W6cz2j35Odd9VZtntdshGrRqHu5__Nrk9O72ZXkSXV-f_pieXkRY8l5HgFRc5KJZwoVmmOQDjrNYpArJMlCUkMpcsT7SAVLEUeB2XQodiJcsyzfk2OVzphsnvB3S-aE1YpWlUh_3gCpCZFBBLgIAe_EDv-sF2YbollUDGeZYE6u-K0rZ3zmJdLKxplR0LYMXSgyJ4UPz3ILD7n4pD2WL1TX4dPQDHK-DRNDj-rlRcT09Xkh-7BJO7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685183385</pqid></control><display><type>article</type><title>Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>CNA'ANI, ALON ; MÜHLEMANN, JOELLE K. ; RAVID, JASMIN ; MASCI, TANIA ; KLEMPIEN, ANTJE ; NGUYEN, THUONG T. H. ; DUDAREVA, NATALIA ; PICHERSKY, ERAN ; VAINSTEIN, ALEXANDER</creator><creatorcontrib>CNA'ANI, ALON ; MÜHLEMANN, JOELLE K. ; RAVID, JASMIN ; MASCI, TANIA ; KLEMPIEN, ANTJE ; NGUYEN, THUONG T. H. ; DUDAREVA, NATALIA ; PICHERSKY, ERAN ; VAINSTEIN, ALEXANDER</creatorcontrib><description>Increasing temperatures due to changing global climate are interfering with plant–pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography–mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid‐based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down‐regulation of scent‐related structural gene expression from both phenylpropanoid and shikimate pathways, and up‐regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic ‘Blue Spark’ plants overexpressing CaMV 35S‐driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long‐term high‐temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up‐regulation of transcription might negate the adverse effects of temperature on scent production.
We demonstrate that petunia flowers produce less volatile phenylpropanoid compounds, in both scent bouquets and internal pools, in response to elevated temperatures. We reveal that the decrease in floral scent is correlated with reduced transcript levels of scent‐related genes, and that the adverse effect of high temperature can be negated by expressing transcriptional up‐regulators. We believe that the conclusions and implications drawn from the original data presented in our manuscript will be of particular interest to a broad spectrum of your readers, particularly in view of recent changes in global climate and the risk of environmental disruption of plant–pollinator mutualism.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.12486</identifier><identifier>PMID: 25402319</identifier><identifier>CODEN: PLCEDV</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>anthocyanin ; Anthocyanins - metabolism ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Down-Regulation ; environmental stimulus ; Flowers - genetics ; Flowers - growth & development ; Flowers - metabolism ; Gas Chromatography-Mass Spectrometry ; Gene Expression ; Gene Expression Regulation, Plant ; Hot Temperature ; Pancreatitis-Associated Proteins ; petunia ; Petunia - genetics ; Petunia - growth & development ; Petunia - metabolism ; Phenotype ; phenylpropanoid ; Plants, Genetically Modified ; production of anthocyanin pigment1 (PAP1) ; Propanols - metabolism ; Shikimic Acid - metabolism ; temperature ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation ; Transcriptome ; Up-Regulation ; volatile ; Volatile Organic Compounds - metabolism</subject><ispartof>Plant, cell and environment, 2015-07, Vol.38 (7), p.1333-1346</ispartof><rights>2014 John Wiley & Sons Ltd</rights><rights>2014 John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-43d3491a0534c08c311030fc7e1e084bb15696095c417a0713f2b4c1e0d6bb793</citedby><cites>FETCH-LOGICAL-c4396-43d3491a0534c08c311030fc7e1e084bb15696095c417a0713f2b4c1e0d6bb793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.12486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.12486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25402319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CNA'ANI, ALON</creatorcontrib><creatorcontrib>MÜHLEMANN, JOELLE K.</creatorcontrib><creatorcontrib>RAVID, JASMIN</creatorcontrib><creatorcontrib>MASCI, TANIA</creatorcontrib><creatorcontrib>KLEMPIEN, ANTJE</creatorcontrib><creatorcontrib>NGUYEN, THUONG T. H.</creatorcontrib><creatorcontrib>DUDAREVA, NATALIA</creatorcontrib><creatorcontrib>PICHERSKY, ERAN</creatorcontrib><creatorcontrib>VAINSTEIN, ALEXANDER</creatorcontrib><title>Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Increasing temperatures due to changing global climate are interfering with plant–pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography–mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid‐based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down‐regulation of scent‐related structural gene expression from both phenylpropanoid and shikimate pathways, and up‐regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic ‘Blue Spark’ plants overexpressing CaMV 35S‐driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long‐term high‐temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up‐regulation of transcription might negate the adverse effects of temperature on scent production.
We demonstrate that petunia flowers produce less volatile phenylpropanoid compounds, in both scent bouquets and internal pools, in response to elevated temperatures. We reveal that the decrease in floral scent is correlated with reduced transcript levels of scent‐related genes, and that the adverse effect of high temperature can be negated by expressing transcriptional up‐regulators. We believe that the conclusions and implications drawn from the original data presented in our manuscript will be of particular interest to a broad spectrum of your readers, particularly in view of recent changes in global climate and the risk of environmental disruption of plant–pollinator mutualism.</description><subject>anthocyanin</subject><subject>Anthocyanins - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Down-Regulation</subject><subject>environmental stimulus</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Flowers - metabolism</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hot Temperature</subject><subject>Pancreatitis-Associated Proteins</subject><subject>petunia</subject><subject>Petunia - genetics</subject><subject>Petunia - growth & development</subject><subject>Petunia - metabolism</subject><subject>Phenotype</subject><subject>phenylpropanoid</subject><subject>Plants, Genetically Modified</subject><subject>production of anthocyanin pigment1 (PAP1)</subject><subject>Propanols - metabolism</subject><subject>Shikimic Acid - metabolism</subject><subject>temperature</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Transcriptome</subject><subject>Up-Regulation</subject><subject>volatile</subject><subject>Volatile Organic Compounds - metabolism</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbtO7DAQhi0Egj1AwQsgSzScIuCJHScp0YrLkZCggDpynMmuUS6L7YDS0dLR8UC8CU-C9yxQIOFiLM1882tmfkL2gB1BeMcLjUcQi0yukQlwmUScCbZOJgwEi9I0hy3yx7k7xkIizTfJVpwIFnPIJ6S9Rj90Rr0_Pb-9hjAfS2sqReumt6qhTmPn6cL21aC96TtqHO1wprx5wGakqq5Re6xoOdK5mc3fn148tgu0yg8W6cz2j35Odd9VZtntdshGrRqHu5__Nrk9O72ZXkSXV-f_pieXkRY8l5HgFRc5KJZwoVmmOQDjrNYpArJMlCUkMpcsT7SAVLEUeB2XQodiJcsyzfk2OVzphsnvB3S-aE1YpWlUh_3gCpCZFBBLgIAe_EDv-sF2YbollUDGeZYE6u-K0rZ3zmJdLKxplR0LYMXSgyJ4UPz3ILD7n4pD2WL1TX4dPQDHK-DRNDj-rlRcT09Xkh-7BJO7</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>CNA'ANI, ALON</creator><creator>MÜHLEMANN, JOELLE K.</creator><creator>RAVID, JASMIN</creator><creator>MASCI, TANIA</creator><creator>KLEMPIEN, ANTJE</creator><creator>NGUYEN, THUONG T. H.</creator><creator>DUDAREVA, NATALIA</creator><creator>PICHERSKY, ERAN</creator><creator>VAINSTEIN, ALEXANDER</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201507</creationdate><title>Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions</title><author>CNA'ANI, ALON ; MÜHLEMANN, JOELLE K. ; RAVID, JASMIN ; MASCI, TANIA ; KLEMPIEN, ANTJE ; NGUYEN, THUONG T. H. ; DUDAREVA, NATALIA ; PICHERSKY, ERAN ; VAINSTEIN, ALEXANDER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-43d3491a0534c08c311030fc7e1e084bb15696095c417a0713f2b4c1e0d6bb793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>anthocyanin</topic><topic>Anthocyanins - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Down-Regulation</topic><topic>environmental stimulus</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Flowers - metabolism</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hot Temperature</topic><topic>Pancreatitis-Associated Proteins</topic><topic>petunia</topic><topic>Petunia - genetics</topic><topic>Petunia - growth & development</topic><topic>Petunia - metabolism</topic><topic>Phenotype</topic><topic>phenylpropanoid</topic><topic>Plants, Genetically Modified</topic><topic>production of anthocyanin pigment1 (PAP1)</topic><topic>Propanols - metabolism</topic><topic>Shikimic Acid - metabolism</topic><topic>temperature</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Transcriptome</topic><topic>Up-Regulation</topic><topic>volatile</topic><topic>Volatile Organic Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CNA'ANI, ALON</creatorcontrib><creatorcontrib>MÜHLEMANN, JOELLE K.</creatorcontrib><creatorcontrib>RAVID, JASMIN</creatorcontrib><creatorcontrib>MASCI, TANIA</creatorcontrib><creatorcontrib>KLEMPIEN, ANTJE</creatorcontrib><creatorcontrib>NGUYEN, THUONG T. H.</creatorcontrib><creatorcontrib>DUDAREVA, NATALIA</creatorcontrib><creatorcontrib>PICHERSKY, ERAN</creatorcontrib><creatorcontrib>VAINSTEIN, ALEXANDER</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CNA'ANI, ALON</au><au>MÜHLEMANN, JOELLE K.</au><au>RAVID, JASMIN</au><au>MASCI, TANIA</au><au>KLEMPIEN, ANTJE</au><au>NGUYEN, THUONG T. H.</au><au>DUDAREVA, NATALIA</au><au>PICHERSKY, ERAN</au><au>VAINSTEIN, ALEXANDER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2015-07</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1333</spage><epage>1346</epage><pages>1333-1346</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><coden>PLCEDV</coden><abstract>Increasing temperatures due to changing global climate are interfering with plant–pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography–mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid‐based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down‐regulation of scent‐related structural gene expression from both phenylpropanoid and shikimate pathways, and up‐regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic ‘Blue Spark’ plants overexpressing CaMV 35S‐driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long‐term high‐temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up‐regulation of transcription might negate the adverse effects of temperature on scent production.
We demonstrate that petunia flowers produce less volatile phenylpropanoid compounds, in both scent bouquets and internal pools, in response to elevated temperatures. We reveal that the decrease in floral scent is correlated with reduced transcript levels of scent‐related genes, and that the adverse effect of high temperature can be negated by expressing transcriptional up‐regulators. We believe that the conclusions and implications drawn from the original data presented in our manuscript will be of particular interest to a broad spectrum of your readers, particularly in view of recent changes in global climate and the risk of environmental disruption of plant–pollinator mutualism.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25402319</pmid><doi>10.1111/pce.12486</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 2015-07, Vol.38 (7), p.1333-1346 |
issn | 0140-7791 1365-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686412611 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | anthocyanin Anthocyanins - metabolism Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Down-Regulation environmental stimulus Flowers - genetics Flowers - growth & development Flowers - metabolism Gas Chromatography-Mass Spectrometry Gene Expression Gene Expression Regulation, Plant Hot Temperature Pancreatitis-Associated Proteins petunia Petunia - genetics Petunia - growth & development Petunia - metabolism Phenotype phenylpropanoid Plants, Genetically Modified production of anthocyanin pigment1 (PAP1) Propanols - metabolism Shikimic Acid - metabolism temperature Transcription Factors - genetics Transcription Factors - metabolism Transcriptional Activation Transcriptome Up-Regulation volatile Volatile Organic Compounds - metabolism |
title | Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petunia%E2%80%89%C3%97%E2%80%89hybrida%20floral%20scent%20production%20is%20negatively%20affected%20by%20high%E2%80%90temperature%20growth%20conditions&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=CNA'ANI,%20ALON&rft.date=2015-07&rft.volume=38&rft.issue=7&rft.spage=1333&rft.epage=1346&rft.pages=1333-1346&rft.issn=0140-7791&rft.eissn=1365-3040&rft.coden=PLCEDV&rft_id=info:doi/10.1111/pce.12486&rft_dat=%3Cproquest_cross%3E3702903251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685183385&rft_id=info:pmid/25402319&rfr_iscdi=true |