Saturn's giant storm and global radiant energy
We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the g...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2015-04, Vol.42 (7), p.2144-2148 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2148 |
---|---|
container_issue | 7 |
container_start_page | 2144 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Li, Liming Jiang, Xun Trammell, Harold J. Pan, Yefeng Hernandez, Joseph Conrath, Barney J. Gierasch, Peter J. Achterberg, Richard K. Nixon, Conor A. Flasar, F. Michael Perez-Hoyos, Santiago West, Robert A. Baines, Kevin H. Knowles, Benjamin |
description | We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux.
Key Points
The giant storm significantly modified Saturn's global radiant energies
Our results suggest that Saturn's internal heat should be reexamined
We also suggest a mechanism to trigger giant storms on Saturn |
doi_str_mv | 10.1002/2015GL063763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685836087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910864112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRsH7c_AEBD3owOvs1mxxFbBWKgt-3ZdJsSjRNdDdF--9drYh4EA_DDMzzDrzzMrbD4ZADiCMBXI_GgNKgXGEDniuVZgBmlQ0A8jgLg-tsI4RHAJAg-YAdXlM_9-1eSKY1tX0S-s7PEmrLZNp0BTWJp_Jz4Vrnp4sttlZRE9z2V99kt8PTm5OzdHw5Oj85HqekMcd0IqgsiXhudCYLiEUFx7yamCpHrcpMl6AEJwVFoY3KDApXklQQDWBFSm6y_eXdZ9-9zF3o7awOE9c01LpuHizHLF5GyMx_UCm1AJlFdPcX-thF89GI5TmHDBXn4k8KDcbPadSROlhSE9-F4F1ln309I7-wHOxHGvZnGhEXS_y1btziT9aOrsZaGI1RlC5Fdejd27eI_JNFI4229xcjqx_uOL8aDu29fAf-yJWB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676003565</pqid></control><display><type>article</type><title>Saturn's giant storm and global radiant energy</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Li, Liming ; Jiang, Xun ; Trammell, Harold J. ; Pan, Yefeng ; Hernandez, Joseph ; Conrath, Barney J. ; Gierasch, Peter J. ; Achterberg, Richard K. ; Nixon, Conor A. ; Flasar, F. Michael ; Perez-Hoyos, Santiago ; West, Robert A. ; Baines, Kevin H. ; Knowles, Benjamin</creator><creatorcontrib>Li, Liming ; Jiang, Xun ; Trammell, Harold J. ; Pan, Yefeng ; Hernandez, Joseph ; Conrath, Barney J. ; Gierasch, Peter J. ; Achterberg, Richard K. ; Nixon, Conor A. ; Flasar, F. Michael ; Perez-Hoyos, Santiago ; West, Robert A. ; Baines, Kevin H. ; Knowles, Benjamin</creatorcontrib><description>We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux.
Key Points
The giant storm significantly modified Saturn's global radiant energies
Our results suggest that Saturn's internal heat should be reexamined
We also suggest a mechanism to trigger giant storms on Saturn</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL063763</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; Cassini mission ; Dust ; Emittance ; Energy ; Estimates ; Geophysics ; giant storm ; Heat ; Heat flux ; Heat transfer ; radiant energy budget ; Saturn ; Solar energy ; Solar generators ; Solar power ; Solar power generation ; Southern Hemisphere ; Storms ; Temporal logic ; Temporal variations</subject><ispartof>Geophysical research letters, 2015-04, Vol.42 (7), p.2144-2148</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</citedby><cites>FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL063763$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL063763$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Jiang, Xun</creatorcontrib><creatorcontrib>Trammell, Harold J.</creatorcontrib><creatorcontrib>Pan, Yefeng</creatorcontrib><creatorcontrib>Hernandez, Joseph</creatorcontrib><creatorcontrib>Conrath, Barney J.</creatorcontrib><creatorcontrib>Gierasch, Peter J.</creatorcontrib><creatorcontrib>Achterberg, Richard K.</creatorcontrib><creatorcontrib>Nixon, Conor A.</creatorcontrib><creatorcontrib>Flasar, F. Michael</creatorcontrib><creatorcontrib>Perez-Hoyos, Santiago</creatorcontrib><creatorcontrib>West, Robert A.</creatorcontrib><creatorcontrib>Baines, Kevin H.</creatorcontrib><creatorcontrib>Knowles, Benjamin</creatorcontrib><title>Saturn's giant storm and global radiant energy</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux.
Key Points
The giant storm significantly modified Saturn's global radiant energies
Our results suggest that Saturn's internal heat should be reexamined
We also suggest a mechanism to trigger giant storms on Saturn</description><subject>Astrophysics</subject><subject>Cassini mission</subject><subject>Dust</subject><subject>Emittance</subject><subject>Energy</subject><subject>Estimates</subject><subject>Geophysics</subject><subject>giant storm</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>radiant energy budget</subject><subject>Saturn</subject><subject>Solar energy</subject><subject>Solar generators</subject><subject>Solar power</subject><subject>Solar power generation</subject><subject>Southern Hemisphere</subject><subject>Storms</subject><subject>Temporal logic</subject><subject>Temporal variations</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRsH7c_AEBD3owOvs1mxxFbBWKgt-3ZdJsSjRNdDdF--9drYh4EA_DDMzzDrzzMrbD4ZADiCMBXI_GgNKgXGEDniuVZgBmlQ0A8jgLg-tsI4RHAJAg-YAdXlM_9-1eSKY1tX0S-s7PEmrLZNp0BTWJp_Jz4Vrnp4sttlZRE9z2V99kt8PTm5OzdHw5Oj85HqekMcd0IqgsiXhudCYLiEUFx7yamCpHrcpMl6AEJwVFoY3KDApXklQQDWBFSm6y_eXdZ9-9zF3o7awOE9c01LpuHizHLF5GyMx_UCm1AJlFdPcX-thF89GI5TmHDBXn4k8KDcbPadSROlhSE9-F4F1ln309I7-wHOxHGvZnGhEXS_y1btziT9aOrsZaGI1RlC5Fdejd27eI_JNFI4229xcjqx_uOL8aDu29fAf-yJWB</recordid><startdate>20150416</startdate><enddate>20150416</enddate><creator>Li, Liming</creator><creator>Jiang, Xun</creator><creator>Trammell, Harold J.</creator><creator>Pan, Yefeng</creator><creator>Hernandez, Joseph</creator><creator>Conrath, Barney J.</creator><creator>Gierasch, Peter J.</creator><creator>Achterberg, Richard K.</creator><creator>Nixon, Conor A.</creator><creator>Flasar, F. Michael</creator><creator>Perez-Hoyos, Santiago</creator><creator>West, Robert A.</creator><creator>Baines, Kevin H.</creator><creator>Knowles, Benjamin</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>7SU</scope></search><sort><creationdate>20150416</creationdate><title>Saturn's giant storm and global radiant energy</title><author>Li, Liming ; Jiang, Xun ; Trammell, Harold J. ; Pan, Yefeng ; Hernandez, Joseph ; Conrath, Barney J. ; Gierasch, Peter J. ; Achterberg, Richard K. ; Nixon, Conor A. ; Flasar, F. Michael ; Perez-Hoyos, Santiago ; West, Robert A. ; Baines, Kevin H. ; Knowles, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>Cassini mission</topic><topic>Dust</topic><topic>Emittance</topic><topic>Energy</topic><topic>Estimates</topic><topic>Geophysics</topic><topic>giant storm</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>radiant energy budget</topic><topic>Saturn</topic><topic>Solar energy</topic><topic>Solar generators</topic><topic>Solar power</topic><topic>Solar power generation</topic><topic>Southern Hemisphere</topic><topic>Storms</topic><topic>Temporal logic</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Jiang, Xun</creatorcontrib><creatorcontrib>Trammell, Harold J.</creatorcontrib><creatorcontrib>Pan, Yefeng</creatorcontrib><creatorcontrib>Hernandez, Joseph</creatorcontrib><creatorcontrib>Conrath, Barney J.</creatorcontrib><creatorcontrib>Gierasch, Peter J.</creatorcontrib><creatorcontrib>Achterberg, Richard K.</creatorcontrib><creatorcontrib>Nixon, Conor A.</creatorcontrib><creatorcontrib>Flasar, F. Michael</creatorcontrib><creatorcontrib>Perez-Hoyos, Santiago</creatorcontrib><creatorcontrib>West, Robert A.</creatorcontrib><creatorcontrib>Baines, Kevin H.</creatorcontrib><creatorcontrib>Knowles, Benjamin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liming</au><au>Jiang, Xun</au><au>Trammell, Harold J.</au><au>Pan, Yefeng</au><au>Hernandez, Joseph</au><au>Conrath, Barney J.</au><au>Gierasch, Peter J.</au><au>Achterberg, Richard K.</au><au>Nixon, Conor A.</au><au>Flasar, F. Michael</au><au>Perez-Hoyos, Santiago</au><au>West, Robert A.</au><au>Baines, Kevin H.</au><au>Knowles, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturn's giant storm and global radiant energy</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-04-16</date><risdate>2015</risdate><volume>42</volume><issue>7</issue><spage>2144</spage><epage>2148</epage><pages>2144-2148</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux.
Key Points
The giant storm significantly modified Saturn's global radiant energies
Our results suggest that Saturn's internal heat should be reexamined
We also suggest a mechanism to trigger giant storms on Saturn</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL063763</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-04, Vol.42 (7), p.2144-2148 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685836087 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Astrophysics Cassini mission Dust Emittance Energy Estimates Geophysics giant storm Heat Heat flux Heat transfer radiant energy budget Saturn Solar energy Solar generators Solar power Solar power generation Southern Hemisphere Storms Temporal logic Temporal variations |
title | Saturn's giant storm and global radiant energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturn's%20giant%20storm%20and%20global%20radiant%20energy&rft.jtitle=Geophysical%20research%20letters&rft.au=Li,%20Liming&rft.date=2015-04-16&rft.volume=42&rft.issue=7&rft.spage=2144&rft.epage=2148&rft.pages=2144-2148&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL063763&rft_dat=%3Cproquest_cross%3E1910864112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676003565&rft_id=info:pmid/&rfr_iscdi=true |