Saturn's giant storm and global radiant energy

We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-04, Vol.42 (7), p.2144-2148
Hauptverfasser: Li, Liming, Jiang, Xun, Trammell, Harold J., Pan, Yefeng, Hernandez, Joseph, Conrath, Barney J., Gierasch, Peter J., Achterberg, Richard K., Nixon, Conor A., Flasar, F. Michael, Perez-Hoyos, Santiago, West, Robert A., Baines, Kevin H., Knowles, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2148
container_issue 7
container_start_page 2144
container_title Geophysical research letters
container_volume 42
creator Li, Liming
Jiang, Xun
Trammell, Harold J.
Pan, Yefeng
Hernandez, Joseph
Conrath, Barney J.
Gierasch, Peter J.
Achterberg, Richard K.
Nixon, Conor A.
Flasar, F. Michael
Perez-Hoyos, Santiago
West, Robert A.
Baines, Kevin H.
Knowles, Benjamin
description We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux. Key Points The giant storm significantly modified Saturn's global radiant energies Our results suggest that Saturn's internal heat should be reexamined We also suggest a mechanism to trigger giant storms on Saturn
doi_str_mv 10.1002/2015GL063763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685836087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910864112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRsH7c_AEBD3owOvs1mxxFbBWKgt-3ZdJsSjRNdDdF--9drYh4EA_DDMzzDrzzMrbD4ZADiCMBXI_GgNKgXGEDniuVZgBmlQ0A8jgLg-tsI4RHAJAg-YAdXlM_9-1eSKY1tX0S-s7PEmrLZNp0BTWJp_Jz4Vrnp4sttlZRE9z2V99kt8PTm5OzdHw5Oj85HqekMcd0IqgsiXhudCYLiEUFx7yamCpHrcpMl6AEJwVFoY3KDApXklQQDWBFSm6y_eXdZ9-9zF3o7awOE9c01LpuHizHLF5GyMx_UCm1AJlFdPcX-thF89GI5TmHDBXn4k8KDcbPadSROlhSE9-F4F1ln309I7-wHOxHGvZnGhEXS_y1btziT9aOrsZaGI1RlC5Fdejd27eI_JNFI4229xcjqx_uOL8aDu29fAf-yJWB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676003565</pqid></control><display><type>article</type><title>Saturn's giant storm and global radiant energy</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Li, Liming ; Jiang, Xun ; Trammell, Harold J. ; Pan, Yefeng ; Hernandez, Joseph ; Conrath, Barney J. ; Gierasch, Peter J. ; Achterberg, Richard K. ; Nixon, Conor A. ; Flasar, F. Michael ; Perez-Hoyos, Santiago ; West, Robert A. ; Baines, Kevin H. ; Knowles, Benjamin</creator><creatorcontrib>Li, Liming ; Jiang, Xun ; Trammell, Harold J. ; Pan, Yefeng ; Hernandez, Joseph ; Conrath, Barney J. ; Gierasch, Peter J. ; Achterberg, Richard K. ; Nixon, Conor A. ; Flasar, F. Michael ; Perez-Hoyos, Santiago ; West, Robert A. ; Baines, Kevin H. ; Knowles, Benjamin</creatorcontrib><description>We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux. Key Points The giant storm significantly modified Saturn's global radiant energies Our results suggest that Saturn's internal heat should be reexamined We also suggest a mechanism to trigger giant storms on Saturn</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL063763</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; Cassini mission ; Dust ; Emittance ; Energy ; Estimates ; Geophysics ; giant storm ; Heat ; Heat flux ; Heat transfer ; radiant energy budget ; Saturn ; Solar energy ; Solar generators ; Solar power ; Solar power generation ; Southern Hemisphere ; Storms ; Temporal logic ; Temporal variations</subject><ispartof>Geophysical research letters, 2015-04, Vol.42 (7), p.2144-2148</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</citedby><cites>FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL063763$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL063763$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Jiang, Xun</creatorcontrib><creatorcontrib>Trammell, Harold J.</creatorcontrib><creatorcontrib>Pan, Yefeng</creatorcontrib><creatorcontrib>Hernandez, Joseph</creatorcontrib><creatorcontrib>Conrath, Barney J.</creatorcontrib><creatorcontrib>Gierasch, Peter J.</creatorcontrib><creatorcontrib>Achterberg, Richard K.</creatorcontrib><creatorcontrib>Nixon, Conor A.</creatorcontrib><creatorcontrib>Flasar, F. Michael</creatorcontrib><creatorcontrib>Perez-Hoyos, Santiago</creatorcontrib><creatorcontrib>West, Robert A.</creatorcontrib><creatorcontrib>Baines, Kevin H.</creatorcontrib><creatorcontrib>Knowles, Benjamin</creatorcontrib><title>Saturn's giant storm and global radiant energy</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux. Key Points The giant storm significantly modified Saturn's global radiant energies Our results suggest that Saturn's internal heat should be reexamined We also suggest a mechanism to trigger giant storms on Saturn</description><subject>Astrophysics</subject><subject>Cassini mission</subject><subject>Dust</subject><subject>Emittance</subject><subject>Energy</subject><subject>Estimates</subject><subject>Geophysics</subject><subject>giant storm</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>radiant energy budget</subject><subject>Saturn</subject><subject>Solar energy</subject><subject>Solar generators</subject><subject>Solar power</subject><subject>Solar power generation</subject><subject>Southern Hemisphere</subject><subject>Storms</subject><subject>Temporal logic</subject><subject>Temporal variations</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRsH7c_AEBD3owOvs1mxxFbBWKgt-3ZdJsSjRNdDdF--9drYh4EA_DDMzzDrzzMrbD4ZADiCMBXI_GgNKgXGEDniuVZgBmlQ0A8jgLg-tsI4RHAJAg-YAdXlM_9-1eSKY1tX0S-s7PEmrLZNp0BTWJp_Jz4Vrnp4sttlZRE9z2V99kt8PTm5OzdHw5Oj85HqekMcd0IqgsiXhudCYLiEUFx7yamCpHrcpMl6AEJwVFoY3KDApXklQQDWBFSm6y_eXdZ9-9zF3o7awOE9c01LpuHizHLF5GyMx_UCm1AJlFdPcX-thF89GI5TmHDBXn4k8KDcbPadSROlhSE9-F4F1ln309I7-wHOxHGvZnGhEXS_y1btziT9aOrsZaGI1RlC5Fdejd27eI_JNFI4229xcjqx_uOL8aDu29fAf-yJWB</recordid><startdate>20150416</startdate><enddate>20150416</enddate><creator>Li, Liming</creator><creator>Jiang, Xun</creator><creator>Trammell, Harold J.</creator><creator>Pan, Yefeng</creator><creator>Hernandez, Joseph</creator><creator>Conrath, Barney J.</creator><creator>Gierasch, Peter J.</creator><creator>Achterberg, Richard K.</creator><creator>Nixon, Conor A.</creator><creator>Flasar, F. Michael</creator><creator>Perez-Hoyos, Santiago</creator><creator>West, Robert A.</creator><creator>Baines, Kevin H.</creator><creator>Knowles, Benjamin</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>7SU</scope></search><sort><creationdate>20150416</creationdate><title>Saturn's giant storm and global radiant energy</title><author>Li, Liming ; Jiang, Xun ; Trammell, Harold J. ; Pan, Yefeng ; Hernandez, Joseph ; Conrath, Barney J. ; Gierasch, Peter J. ; Achterberg, Richard K. ; Nixon, Conor A. ; Flasar, F. Michael ; Perez-Hoyos, Santiago ; West, Robert A. ; Baines, Kevin H. ; Knowles, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5696-c2addaa197583b083bab169fc7f9654d85d0421a40bb5748762eda3400156fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>Cassini mission</topic><topic>Dust</topic><topic>Emittance</topic><topic>Energy</topic><topic>Estimates</topic><topic>Geophysics</topic><topic>giant storm</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>radiant energy budget</topic><topic>Saturn</topic><topic>Solar energy</topic><topic>Solar generators</topic><topic>Solar power</topic><topic>Solar power generation</topic><topic>Southern Hemisphere</topic><topic>Storms</topic><topic>Temporal logic</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Jiang, Xun</creatorcontrib><creatorcontrib>Trammell, Harold J.</creatorcontrib><creatorcontrib>Pan, Yefeng</creatorcontrib><creatorcontrib>Hernandez, Joseph</creatorcontrib><creatorcontrib>Conrath, Barney J.</creatorcontrib><creatorcontrib>Gierasch, Peter J.</creatorcontrib><creatorcontrib>Achterberg, Richard K.</creatorcontrib><creatorcontrib>Nixon, Conor A.</creatorcontrib><creatorcontrib>Flasar, F. Michael</creatorcontrib><creatorcontrib>Perez-Hoyos, Santiago</creatorcontrib><creatorcontrib>West, Robert A.</creatorcontrib><creatorcontrib>Baines, Kevin H.</creatorcontrib><creatorcontrib>Knowles, Benjamin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liming</au><au>Jiang, Xun</au><au>Trammell, Harold J.</au><au>Pan, Yefeng</au><au>Hernandez, Joseph</au><au>Conrath, Barney J.</au><au>Gierasch, Peter J.</au><au>Achterberg, Richard K.</au><au>Nixon, Conor A.</au><au>Flasar, F. Michael</au><au>Perez-Hoyos, Santiago</au><au>West, Robert A.</au><au>Baines, Kevin H.</au><au>Knowles, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturn's giant storm and global radiant energy</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-04-16</date><risdate>2015</risdate><volume>42</volume><issue>7</issue><spage>2144</spage><epage>2148</epage><pages>2144-2148</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20–55°N) with a maximum change of 9.2 ± 0.1% around 45°N from 2010 to 2011. Such a regional change caused the global‐average emitted power to increase by ~2.0 ± 0.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric‐average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.5 ± 0.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux. Key Points The giant storm significantly modified Saturn's global radiant energies Our results suggest that Saturn's internal heat should be reexamined We also suggest a mechanism to trigger giant storms on Saturn</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL063763</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-04, Vol.42 (7), p.2144-2148
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1685836087
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Astrophysics
Cassini mission
Dust
Emittance
Energy
Estimates
Geophysics
giant storm
Heat
Heat flux
Heat transfer
radiant energy budget
Saturn
Solar energy
Solar generators
Solar power
Solar power generation
Southern Hemisphere
Storms
Temporal logic
Temporal variations
title Saturn's giant storm and global radiant energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturn's%20giant%20storm%20and%20global%20radiant%20energy&rft.jtitle=Geophysical%20research%20letters&rft.au=Li,%20Liming&rft.date=2015-04-16&rft.volume=42&rft.issue=7&rft.spage=2144&rft.epage=2148&rft.pages=2144-2148&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL063763&rft_dat=%3Cproquest_cross%3E1910864112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676003565&rft_id=info:pmid/&rfr_iscdi=true