Combination of Evidence with Different Weighting Factors: A Novel Probabilistic-Based Dissimilarity Measure Approach

To solve the invalidation problem of Dempster-Shafer theory of evidence (DS) with high conflict in multisensor data fusion, this paper presents a novel combination approach of conflict evidence with different weighting factors using a new probabilistic dissimilarity measure. Firstly, an improved pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2015-01, Vol.2015 (2015), p.1-9
Hauptverfasser: Ma, Mengmeng, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2015
container_start_page 1
container_title Journal of sensors
container_volume 2015
creator Ma, Mengmeng
Xu, Wei
description To solve the invalidation problem of Dempster-Shafer theory of evidence (DS) with high conflict in multisensor data fusion, this paper presents a novel combination approach of conflict evidence with different weighting factors using a new probabilistic dissimilarity measure. Firstly, an improved probabilistic transformation function is proposed to map basic belief assignments (BBAs) to probabilities. Then, a new dissimilarity measure integrating fuzzy nearness and introduced correlation coefficient is proposed to characterize not only the difference between basic belief functions (BBAs) but also the divergence degree of the hypothesis that two BBAs support. Finally, the weighting factors used to reassign conflicts on BBAs are developed and Dempster’s rule is chosen to combine the discounted sources. Simple numerical examples are employed to demonstrate the merit of the proposed method. Through analysis and comparison of the results, the new combination approach can effectively solve the problem of conflict management with better convergence performance and robustness.
doi_str_mv 10.1155/2015/509385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685835176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685835176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a579t-48f8e1a8ba3fadf1f87ca6c57d470d59b9ca75873f1e126d8cc283294e42cb3</originalsourceid><addsrcrecordid>eNqF0M9LHTEQB_BFWtDanryXQC_FsjXZbDbZ3p6v2gpqCxX0tsxmJ76RfZtnkqf43zeypZRePM0cPvODb1EcCP5ZCKWOKi7UkeKtNGqn2BON0aWuGvPqb69udos3Md5x3kgt5V6Rln7d0wSJ_MS8YycPNOBkkT1SWrGv5BwGnBK7RrpdJZpu2SnY5EP8whbs0j_gyH4G30NPI8VEtjyGiEMejJHWNEKg9MQuEOI2IFtsNsGDXb0tXjsYI777U_eLX6cnV8vv5fmPb2fLxXkJSreprI0zKMD0IB0MTjijLTRW6aHWfFBt31rQymjpBIqqGYy1lZFVW2Nd2V7uFx_nrfno_RZj6tYULY4jTOi3scuRKCOV0E2mH_6jd34bpvxbVk1rNK9kndWnWdngYwzouk2gNYSnTvDuOf_uOf9uzj_rw1mvaBrgkV7A72eMmaCDf7DmoubyN9X5j3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669870234</pqid></control><display><type>article</type><title>Combination of Evidence with Different Weighting Factors: A Novel Probabilistic-Based Dissimilarity Measure Approach</title><source>Wiley-Blackwell Open Access Collection</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ma, Mengmeng ; Xu, Wei</creator><contributor>Campopiano, Stefania</contributor><creatorcontrib>Ma, Mengmeng ; Xu, Wei ; Campopiano, Stefania</creatorcontrib><description>To solve the invalidation problem of Dempster-Shafer theory of evidence (DS) with high conflict in multisensor data fusion, this paper presents a novel combination approach of conflict evidence with different weighting factors using a new probabilistic dissimilarity measure. Firstly, an improved probabilistic transformation function is proposed to map basic belief assignments (BBAs) to probabilities. Then, a new dissimilarity measure integrating fuzzy nearness and introduced correlation coefficient is proposed to characterize not only the difference between basic belief functions (BBAs) but also the divergence degree of the hypothesis that two BBAs support. Finally, the weighting factors used to reassign conflicts on BBAs are developed and Dempster’s rule is chosen to combine the discounted sources. Simple numerical examples are employed to demonstrate the merit of the proposed method. Through analysis and comparison of the results, the new combination approach can effectively solve the problem of conflict management with better convergence performance and robustness.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2015/509385</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Convergence ; Mathematical analysis ; Mathematical models ; Probabilistic methods ; Probability theory ; Robustness ; Transformations (mathematics) ; Weighting</subject><ispartof>Journal of sensors, 2015-01, Vol.2015 (2015), p.1-9</ispartof><rights>Copyright © 2015 Mengmeng Ma and Jiyao An.</rights><rights>Copyright © 2015 Mengmeng Ma and Jiyao An. Mengmeng Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a579t-48f8e1a8ba3fadf1f87ca6c57d470d59b9ca75873f1e126d8cc283294e42cb3</citedby><cites>FETCH-LOGICAL-a579t-48f8e1a8ba3fadf1f87ca6c57d470d59b9ca75873f1e126d8cc283294e42cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Campopiano, Stefania</contributor><creatorcontrib>Ma, Mengmeng</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Combination of Evidence with Different Weighting Factors: A Novel Probabilistic-Based Dissimilarity Measure Approach</title><title>Journal of sensors</title><description>To solve the invalidation problem of Dempster-Shafer theory of evidence (DS) with high conflict in multisensor data fusion, this paper presents a novel combination approach of conflict evidence with different weighting factors using a new probabilistic dissimilarity measure. Firstly, an improved probabilistic transformation function is proposed to map basic belief assignments (BBAs) to probabilities. Then, a new dissimilarity measure integrating fuzzy nearness and introduced correlation coefficient is proposed to characterize not only the difference between basic belief functions (BBAs) but also the divergence degree of the hypothesis that two BBAs support. Finally, the weighting factors used to reassign conflicts on BBAs are developed and Dempster’s rule is chosen to combine the discounted sources. Simple numerical examples are employed to demonstrate the merit of the proposed method. Through analysis and comparison of the results, the new combination approach can effectively solve the problem of conflict management with better convergence performance and robustness.</description><subject>Convergence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Robustness</subject><subject>Transformations (mathematics)</subject><subject>Weighting</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LHTEQB_BFWtDanryXQC_FsjXZbDbZ3p6v2gpqCxX0tsxmJ76RfZtnkqf43zeypZRePM0cPvODb1EcCP5ZCKWOKi7UkeKtNGqn2BON0aWuGvPqb69udos3Md5x3kgt5V6Rln7d0wSJ_MS8YycPNOBkkT1SWrGv5BwGnBK7RrpdJZpu2SnY5EP8whbs0j_gyH4G30NPI8VEtjyGiEMejJHWNEKg9MQuEOI2IFtsNsGDXb0tXjsYI777U_eLX6cnV8vv5fmPb2fLxXkJSreprI0zKMD0IB0MTjijLTRW6aHWfFBt31rQymjpBIqqGYy1lZFVW2Nd2V7uFx_nrfno_RZj6tYULY4jTOi3scuRKCOV0E2mH_6jd34bpvxbVk1rNK9kndWnWdngYwzouk2gNYSnTvDuOf_uOf9uzj_rw1mvaBrgkV7A72eMmaCDf7DmoubyN9X5j3w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ma, Mengmeng</creator><creator>Xu, Wei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150101</creationdate><title>Combination of Evidence with Different Weighting Factors: A Novel Probabilistic-Based Dissimilarity Measure Approach</title><author>Ma, Mengmeng ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a579t-48f8e1a8ba3fadf1f87ca6c57d470d59b9ca75873f1e126d8cc283294e42cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Convergence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Robustness</topic><topic>Transformations (mathematics)</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Mengmeng</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Mengmeng</au><au>Xu, Wei</au><au>Campopiano, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Evidence with Different Weighting Factors: A Novel Probabilistic-Based Dissimilarity Measure Approach</atitle><jtitle>Journal of sensors</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>To solve the invalidation problem of Dempster-Shafer theory of evidence (DS) with high conflict in multisensor data fusion, this paper presents a novel combination approach of conflict evidence with different weighting factors using a new probabilistic dissimilarity measure. Firstly, an improved probabilistic transformation function is proposed to map basic belief assignments (BBAs) to probabilities. Then, a new dissimilarity measure integrating fuzzy nearness and introduced correlation coefficient is proposed to characterize not only the difference between basic belief functions (BBAs) but also the divergence degree of the hypothesis that two BBAs support. Finally, the weighting factors used to reassign conflicts on BBAs are developed and Dempster’s rule is chosen to combine the discounted sources. Simple numerical examples are employed to demonstrate the merit of the proposed method. Through analysis and comparison of the results, the new combination approach can effectively solve the problem of conflict management with better convergence performance and robustness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/509385</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2015-01, Vol.2015 (2015), p.1-9
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_miscellaneous_1685835176
source Wiley-Blackwell Open Access Collection; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Convergence
Mathematical analysis
Mathematical models
Probabilistic methods
Probability theory
Robustness
Transformations (mathematics)
Weighting
title Combination of Evidence with Different Weighting Factors: A Novel Probabilistic-Based Dissimilarity Measure Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Evidence%20with%20Different%20Weighting%20Factors:%20A%20Novel%20Probabilistic-Based%20Dissimilarity%20Measure%20Approach&rft.jtitle=Journal%20of%20sensors&rft.au=Ma,%20Mengmeng&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2015/509385&rft_dat=%3Cproquest_cross%3E1685835176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669870234&rft_id=info:pmid/&rfr_iscdi=true