Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA

Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and rech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2015-05, Vol.23 (3), p.451-465
Hauptverfasser: Miller, Benjamin V., Lerch, Robert N., Groves, Christopher G., Polk, Jason S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 3
container_start_page 451
container_title Hydrogeology journal
container_volume 23
creator Miller, Benjamin V.
Lerch, Robert N.
Groves, Christopher G.
Polk, Jason S.
description Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and recharge sources; (2) developed end-member mixing models to estimate contributing proportions of CC and WG; and (3) created a conceptual model for the system. Samples analyzed for major ions and specific conductivity, in conjunction with a rotating continuous monitoring program to identify statistically comparable baseflow conditions, were used to assess differences among the sites. Monitoring data showed that the springs differed depending upon recharge proportions. Cluster analysis of average ion concentrations supported the choice of CC and WG as mixing model end members. Results showed a range in the proportions of the recharge sources, from surface-water to groundwater dominated. A conceptual model suggests that a system of distinct conduits beneath the WG flood plain transmits water to the individual springs. These conduits controlled the end-member recharge contributions and water chemistry of the springs. Interpretation of relative proportions of recharge contributions extends existing knowledge of karst hydrologic geometry beyond that of point-to-point connections to revealing complex surface-water/groundwater mixing in heterogeneous distributary spring systems.
doi_str_mv 10.1007/s10040-014-1225-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685834561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680442968</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-435582a91292aa5c1423edd9f9b4a610929df4a879f7cf6c284f36f3d2c7e1e63</originalsourceid><addsrcrecordid>eNqNkV9LwzAUxYMoOKcfwLeALz5YzU3Spnkcw38wEZx7DlmbbJ3tOpMWVj-9qfVBBMGXm0v4ncu95yB0DuQaCBE3PlROIgI8AkrjqDtAI-AsDj-xOPzqIaIg-DE68X5DAg2CjdD8xWRr7VYGV8W-2K5wscUaZ3W1K80e54VvXLFsG-067HeuB3znG1P1XLM2-Knwvm5dgZ8_tHvzV3gxn5yiI6tLb86-3zFa3N2-Th-i2fP943QyizTnaROF7eKUaglUUq3jDDhlJs-llUuuEyCSytxynQppRWaTjKbcssSynGbCgEnYGF0Oc3eufm-Nb1RV-MyUpd6auvUKkjROGY8T-A9KOKcySQN68QvdhAO34ZBACQ6SCRkHCgYqc7X3zlgV3KmCTQqI6hNRQyIqJKL6RFQXNHTQDE4a92Pyn6JPAeGNDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674193795</pqid></control><display><type>article</type><title>Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA</title><source>SpringerLink Journals - AutoHoldings</source><creator>Miller, Benjamin V. ; Lerch, Robert N. ; Groves, Christopher G. ; Polk, Jason S.</creator><creatorcontrib>Miller, Benjamin V. ; Lerch, Robert N. ; Groves, Christopher G. ; Polk, Jason S.</creatorcontrib><description>Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and recharge sources; (2) developed end-member mixing models to estimate contributing proportions of CC and WG; and (3) created a conceptual model for the system. Samples analyzed for major ions and specific conductivity, in conjunction with a rotating continuous monitoring program to identify statistically comparable baseflow conditions, were used to assess differences among the sites. Monitoring data showed that the springs differed depending upon recharge proportions. Cluster analysis of average ion concentrations supported the choice of CC and WG as mixing model end members. Results showed a range in the proportions of the recharge sources, from surface-water to groundwater dominated. A conceptual model suggests that a system of distinct conduits beneath the WG flood plain transmits water to the individual springs. These conduits controlled the end-member recharge contributions and water chemistry of the springs. Interpretation of relative proportions of recharge contributions extends existing knowledge of karst hydrologic geometry beyond that of point-to-point connections to revealing complex surface-water/groundwater mixing in heterogeneous distributary spring systems.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-014-1225-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Base flow ; Chemical properties ; Conduits ; Earth and Environmental Science ; Earth Sciences ; Floodplains ; Geology ; Geophysics/Geodesy ; Groundwater ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Karst ; Monitoring ; Perennial springs ; Recharge ; Samples ; Specific conductivity ; Springs ; Statistical methods ; Surface water ; Waste Water Technology ; Water chemistry ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution ; Water resources management ; Water springs</subject><ispartof>Hydrogeology journal, 2015-05, Vol.23 (3), p.451-465</ispartof><rights>The Author(s) 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-435582a91292aa5c1423edd9f9b4a610929df4a879f7cf6c284f36f3d2c7e1e63</citedby><cites>FETCH-LOGICAL-a448t-435582a91292aa5c1423edd9f9b4a610929df4a879f7cf6c284f36f3d2c7e1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-014-1225-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-014-1225-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Miller, Benjamin V.</creatorcontrib><creatorcontrib>Lerch, Robert N.</creatorcontrib><creatorcontrib>Groves, Christopher G.</creatorcontrib><creatorcontrib>Polk, Jason S.</creatorcontrib><title>Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and recharge sources; (2) developed end-member mixing models to estimate contributing proportions of CC and WG; and (3) created a conceptual model for the system. Samples analyzed for major ions and specific conductivity, in conjunction with a rotating continuous monitoring program to identify statistically comparable baseflow conditions, were used to assess differences among the sites. Monitoring data showed that the springs differed depending upon recharge proportions. Cluster analysis of average ion concentrations supported the choice of CC and WG as mixing model end members. Results showed a range in the proportions of the recharge sources, from surface-water to groundwater dominated. A conceptual model suggests that a system of distinct conduits beneath the WG flood plain transmits water to the individual springs. These conduits controlled the end-member recharge contributions and water chemistry of the springs. Interpretation of relative proportions of recharge contributions extends existing knowledge of karst hydrologic geometry beyond that of point-to-point connections to revealing complex surface-water/groundwater mixing in heterogeneous distributary spring systems.</description><subject>Aquatic Pollution</subject><subject>Base flow</subject><subject>Chemical properties</subject><subject>Conduits</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Floodplains</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Groundwater</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Karst</subject><subject>Monitoring</subject><subject>Perennial springs</subject><subject>Recharge</subject><subject>Samples</subject><subject>Specific conductivity</subject><subject>Springs</subject><subject>Statistical methods</subject><subject>Surface water</subject><subject>Waste Water Technology</subject><subject>Water chemistry</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><subject>Water resources management</subject><subject>Water springs</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkV9LwzAUxYMoOKcfwLeALz5YzU3Spnkcw38wEZx7DlmbbJ3tOpMWVj-9qfVBBMGXm0v4ncu95yB0DuQaCBE3PlROIgI8AkrjqDtAI-AsDj-xOPzqIaIg-DE68X5DAg2CjdD8xWRr7VYGV8W-2K5wscUaZ3W1K80e54VvXLFsG-067HeuB3znG1P1XLM2-Knwvm5dgZ8_tHvzV3gxn5yiI6tLb86-3zFa3N2-Th-i2fP943QyizTnaROF7eKUaglUUq3jDDhlJs-llUuuEyCSytxynQppRWaTjKbcssSynGbCgEnYGF0Oc3eufm-Nb1RV-MyUpd6auvUKkjROGY8T-A9KOKcySQN68QvdhAO34ZBACQ6SCRkHCgYqc7X3zlgV3KmCTQqI6hNRQyIqJKL6RFQXNHTQDE4a92Pyn6JPAeGNDg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Miller, Benjamin V.</creator><creator>Lerch, Robert N.</creator><creator>Groves, Christopher G.</creator><creator>Polk, Jason S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20150501</creationdate><title>Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA</title><author>Miller, Benjamin V. ; Lerch, Robert N. ; Groves, Christopher G. ; Polk, Jason S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-435582a91292aa5c1423edd9f9b4a610929df4a879f7cf6c284f36f3d2c7e1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aquatic Pollution</topic><topic>Base flow</topic><topic>Chemical properties</topic><topic>Conduits</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Floodplains</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Groundwater</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Karst</topic><topic>Monitoring</topic><topic>Perennial springs</topic><topic>Recharge</topic><topic>Samples</topic><topic>Specific conductivity</topic><topic>Springs</topic><topic>Statistical methods</topic><topic>Surface water</topic><topic>Waste Water Technology</topic><topic>Water chemistry</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><topic>Water resources management</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Benjamin V.</creatorcontrib><creatorcontrib>Lerch, Robert N.</creatorcontrib><creatorcontrib>Groves, Christopher G.</creatorcontrib><creatorcontrib>Polk, Jason S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Benjamin V.</au><au>Lerch, Robert N.</au><au>Groves, Christopher G.</au><au>Polk, Jason S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>23</volume><issue>3</issue><spage>451</spage><epage>465</epage><pages>451-465</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and recharge sources; (2) developed end-member mixing models to estimate contributing proportions of CC and WG; and (3) created a conceptual model for the system. Samples analyzed for major ions and specific conductivity, in conjunction with a rotating continuous monitoring program to identify statistically comparable baseflow conditions, were used to assess differences among the sites. Monitoring data showed that the springs differed depending upon recharge proportions. Cluster analysis of average ion concentrations supported the choice of CC and WG as mixing model end members. Results showed a range in the proportions of the recharge sources, from surface-water to groundwater dominated. A conceptual model suggests that a system of distinct conduits beneath the WG flood plain transmits water to the individual springs. These conduits controlled the end-member recharge contributions and water chemistry of the springs. Interpretation of relative proportions of recharge contributions extends existing knowledge of karst hydrologic geometry beyond that of point-to-point connections to revealing complex surface-water/groundwater mixing in heterogeneous distributary spring systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-014-1225-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1431-2174
ispartof Hydrogeology journal, 2015-05, Vol.23 (3), p.451-465
issn 1431-2174
1435-0157
language eng
recordid cdi_proquest_miscellaneous_1685834561
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Base flow
Chemical properties
Conduits
Earth and Environmental Science
Earth Sciences
Floodplains
Geology
Geophysics/Geodesy
Groundwater
Hydrogeology
Hydrology
Hydrology/Water Resources
Karst
Monitoring
Perennial springs
Recharge
Samples
Specific conductivity
Springs
Statistical methods
Surface water
Waste Water Technology
Water chemistry
Water Management
Water Pollution Control
Water Quality/Water Pollution
Water resources management
Water springs
title Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recharge%20mixing%20in%20a%20complex%20distributary%20spring%20system%20in%20the%20Missouri%20Ozarks,%20USA&rft.jtitle=Hydrogeology%20journal&rft.au=Miller,%20Benjamin%20V.&rft.date=2015-05-01&rft.volume=23&rft.issue=3&rft.spage=451&rft.epage=465&rft.pages=451-465&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-014-1225-y&rft_dat=%3Cproquest_cross%3E1680442968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674193795&rft_id=info:pmid/&rfr_iscdi=true