Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses

High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2015-06, Vol.17 (3), p.9952-11, Article 50
Hauptverfasser: Ahnood, A., Escudie, M. C., Cicione, R., Abeyrathne, C. D., Ganesan, K., Fox, K. E., Garrett, D. J., Stacey, A., Apollo, N. V., Lichter, S. G., Thomas, C. D. L., Tran, N., Meffin, H., Prawer, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 3
container_start_page 9952
container_title Biomedical microdevices
container_volume 17
creator Ahnood, A.
Escudie, M. C.
Cicione, R.
Abeyrathne, C. D.
Ganesan, K.
Fox, K. E.
Garrett, D. J.
Stacey, A.
Apollo, N. V.
Lichter, S. G.
Thomas, C. D. L.
Tran, N.
Meffin, H.
Prawer, S.
description High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.
doi_str_mv 10.1007/s10544-015-9952-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685834476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680452084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-8799925fa6c2e1d0fcad6d52f1a8c8d4765827900f1bea34bb964d6864de79933</originalsourceid><addsrcrecordid>eNqNkV1rHCEYhSW0NGnSH5CbIvSmN9Oq4-dlWNIPSMlFm8sgrr6za5h1EnUC8-_rdtNSCoUgqOBzzpH3IHROyQdKiPpYKBGcd4SKzhjBuuUInVChWKeVpi_avdeqY1TJY_S6lDtCqJFSvkLHTGilemVO0O3NWLNLLk0-L6W6cYwJcIhuN6XQrb5df8cBHqMHHFOFTXY1Tgnnaa6AhynjbdxssfNzrAvOUGNyI77PU6lbKFDO0MvBjQXePJ2n6ObT5Y_Vl-7q-vPX1cVV53mva_uuMYaJwUnPgAYyeBdkEGygTnsduJJCM2UIGegaXM_XayN5kLpt0KR9f4reH3xb9MMMpdpdLB7G0SWY5mKp1EL3vBk9ByVcMKL5M1DFGW3LNPTdP-jdNOc2jF-Gep9sdKPogfJtQiXDYO9z3Lm8WErsvlF7aNS2Ru2-Ubs0zdsn53m9g_BH8bvCBrADUNpT2kD-K_q_rj8BjlWr5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688447698</pqid></control><display><type>article</type><title>Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ahnood, A. ; Escudie, M. C. ; Cicione, R. ; Abeyrathne, C. D. ; Ganesan, K. ; Fox, K. E. ; Garrett, D. J. ; Stacey, A. ; Apollo, N. V. ; Lichter, S. G. ; Thomas, C. D. L. ; Tran, N. ; Meffin, H. ; Prawer, S.</creator><creatorcontrib>Ahnood, A. ; Escudie, M. C. ; Cicione, R. ; Abeyrathne, C. D. ; Ganesan, K. ; Fox, K. E. ; Garrett, D. J. ; Stacey, A. ; Apollo, N. V. ; Lichter, S. G. ; Thomas, C. D. L. ; Tran, N. ; Meffin, H. ; Prawer, S.</creatorcontrib><description>High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-015-9952-y</identifier><identifier>PMID: 25877379</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Arrays ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Crystallization ; Density ; Diamonds ; Electric Conductivity ; Electric Stimulation Therapy - instrumentation ; Electrodes ; Electrodes, Implanted ; Engineering ; Engineering Fluid Dynamics ; Humans ; Indium ; Lithography ; Microarray Analysis - instrumentation ; Microelectrodes ; Molecular Imprinting - methods ; Nanodiamonds - chemistry ; Nanodiamonds - ultrastructure ; Nanotechnology ; Prostheses ; Retina ; Semiconductors ; Strategy ; Surgical implants ; Systems Integration ; Visual Acuity - physiology ; Visual Prosthesis</subject><ispartof>Biomedical microdevices, 2015-06, Vol.17 (3), p.9952-11, Article 50</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-8799925fa6c2e1d0fcad6d52f1a8c8d4765827900f1bea34bb964d6864de79933</citedby><cites>FETCH-LOGICAL-c438t-8799925fa6c2e1d0fcad6d52f1a8c8d4765827900f1bea34bb964d6864de79933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-015-9952-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-015-9952-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25877379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahnood, A.</creatorcontrib><creatorcontrib>Escudie, M. C.</creatorcontrib><creatorcontrib>Cicione, R.</creatorcontrib><creatorcontrib>Abeyrathne, C. D.</creatorcontrib><creatorcontrib>Ganesan, K.</creatorcontrib><creatorcontrib>Fox, K. E.</creatorcontrib><creatorcontrib>Garrett, D. J.</creatorcontrib><creatorcontrib>Stacey, A.</creatorcontrib><creatorcontrib>Apollo, N. V.</creatorcontrib><creatorcontrib>Lichter, S. G.</creatorcontrib><creatorcontrib>Thomas, C. D. L.</creatorcontrib><creatorcontrib>Tran, N.</creatorcontrib><creatorcontrib>Meffin, H.</creatorcontrib><creatorcontrib>Prawer, S.</creatorcontrib><title>Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.</description><subject>Animals</subject><subject>Arrays</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Crystallization</subject><subject>Density</subject><subject>Diamonds</subject><subject>Electric Conductivity</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Humans</subject><subject>Indium</subject><subject>Lithography</subject><subject>Microarray Analysis - instrumentation</subject><subject>Microelectrodes</subject><subject>Molecular Imprinting - methods</subject><subject>Nanodiamonds - chemistry</subject><subject>Nanodiamonds - ultrastructure</subject><subject>Nanotechnology</subject><subject>Prostheses</subject><subject>Retina</subject><subject>Semiconductors</subject><subject>Strategy</subject><subject>Surgical implants</subject><subject>Systems Integration</subject><subject>Visual Acuity - physiology</subject><subject>Visual Prosthesis</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkV1rHCEYhSW0NGnSH5CbIvSmN9Oq4-dlWNIPSMlFm8sgrr6za5h1EnUC8-_rdtNSCoUgqOBzzpH3IHROyQdKiPpYKBGcd4SKzhjBuuUInVChWKeVpi_avdeqY1TJY_S6lDtCqJFSvkLHTGilemVO0O3NWLNLLk0-L6W6cYwJcIhuN6XQrb5df8cBHqMHHFOFTXY1Tgnnaa6AhynjbdxssfNzrAvOUGNyI77PU6lbKFDO0MvBjQXePJ2n6ObT5Y_Vl-7q-vPX1cVV53mva_uuMYaJwUnPgAYyeBdkEGygTnsduJJCM2UIGegaXM_XayN5kLpt0KR9f4reH3xb9MMMpdpdLB7G0SWY5mKp1EL3vBk9ByVcMKL5M1DFGW3LNPTdP-jdNOc2jF-Gep9sdKPogfJtQiXDYO9z3Lm8WErsvlF7aNS2Ru2-Ubs0zdsn53m9g_BH8bvCBrADUNpT2kD-K_q_rj8BjlWr5g</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Ahnood, A.</creator><creator>Escudie, M. C.</creator><creator>Cicione, R.</creator><creator>Abeyrathne, C. D.</creator><creator>Ganesan, K.</creator><creator>Fox, K. E.</creator><creator>Garrett, D. J.</creator><creator>Stacey, A.</creator><creator>Apollo, N. V.</creator><creator>Lichter, S. G.</creator><creator>Thomas, C. D. L.</creator><creator>Tran, N.</creator><creator>Meffin, H.</creator><creator>Prawer, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QF</scope><scope>JG9</scope></search><sort><creationdate>20150601</creationdate><title>Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses</title><author>Ahnood, A. ; Escudie, M. C. ; Cicione, R. ; Abeyrathne, C. D. ; Ganesan, K. ; Fox, K. E. ; Garrett, D. J. ; Stacey, A. ; Apollo, N. V. ; Lichter, S. G. ; Thomas, C. D. L. ; Tran, N. ; Meffin, H. ; Prawer, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-8799925fa6c2e1d0fcad6d52f1a8c8d4765827900f1bea34bb964d6864de79933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Arrays</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Crystallization</topic><topic>Density</topic><topic>Diamonds</topic><topic>Electric Conductivity</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Humans</topic><topic>Indium</topic><topic>Lithography</topic><topic>Microarray Analysis - instrumentation</topic><topic>Microelectrodes</topic><topic>Molecular Imprinting - methods</topic><topic>Nanodiamonds - chemistry</topic><topic>Nanodiamonds - ultrastructure</topic><topic>Nanotechnology</topic><topic>Prostheses</topic><topic>Retina</topic><topic>Semiconductors</topic><topic>Strategy</topic><topic>Surgical implants</topic><topic>Systems Integration</topic><topic>Visual Acuity - physiology</topic><topic>Visual Prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahnood, A.</creatorcontrib><creatorcontrib>Escudie, M. C.</creatorcontrib><creatorcontrib>Cicione, R.</creatorcontrib><creatorcontrib>Abeyrathne, C. D.</creatorcontrib><creatorcontrib>Ganesan, K.</creatorcontrib><creatorcontrib>Fox, K. E.</creatorcontrib><creatorcontrib>Garrett, D. J.</creatorcontrib><creatorcontrib>Stacey, A.</creatorcontrib><creatorcontrib>Apollo, N. V.</creatorcontrib><creatorcontrib>Lichter, S. G.</creatorcontrib><creatorcontrib>Thomas, C. D. L.</creatorcontrib><creatorcontrib>Tran, N.</creatorcontrib><creatorcontrib>Meffin, H.</creatorcontrib><creatorcontrib>Prawer, S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Materials Research Database</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahnood, A.</au><au>Escudie, M. C.</au><au>Cicione, R.</au><au>Abeyrathne, C. D.</au><au>Ganesan, K.</au><au>Fox, K. E.</au><au>Garrett, D. J.</au><au>Stacey, A.</au><au>Apollo, N. V.</au><au>Lichter, S. G.</au><au>Thomas, C. D. L.</au><au>Tran, N.</au><au>Meffin, H.</au><au>Prawer, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>17</volume><issue>3</issue><spage>9952</spage><epage>11</epage><pages>9952-11</pages><artnum>50</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25877379</pmid><doi>10.1007/s10544-015-9952-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2015-06, Vol.17 (3), p.9952-11, Article 50
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_1685834476
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Arrays
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Crystallization
Density
Diamonds
Electric Conductivity
Electric Stimulation Therapy - instrumentation
Electrodes
Electrodes, Implanted
Engineering
Engineering Fluid Dynamics
Humans
Indium
Lithography
Microarray Analysis - instrumentation
Microelectrodes
Molecular Imprinting - methods
Nanodiamonds - chemistry
Nanodiamonds - ultrastructure
Nanotechnology
Prostheses
Retina
Semiconductors
Strategy
Surgical implants
Systems Integration
Visual Acuity - physiology
Visual Prosthesis
title Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrananocrystalline%20diamond-CMOS%20device%20integration%20route%20for%20high%20acuity%20retinal%20prostheses&rft.jtitle=Biomedical%20microdevices&rft.au=Ahnood,%20A.&rft.date=2015-06-01&rft.volume=17&rft.issue=3&rft.spage=9952&rft.epage=11&rft.pages=9952-11&rft.artnum=50&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-015-9952-y&rft_dat=%3Cproquest_cross%3E1680452084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688447698&rft_id=info:pmid/25877379&rfr_iscdi=true