Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell‐based bone tissue engineering

Nanoclay modified with unnatural amino acid was used to design a nanoclay‐hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2015-06, Vol.103 (6), p.2077-2101
Hauptverfasser: Ambre, Avinash H., Katti, Dinesh R., Katti, Kalpana S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2101
container_issue 6
container_start_page 2077
container_title Journal of biomedical materials research. Part A
container_volume 103
creator Ambre, Avinash H.
Katti, Dinesh R.
Katti, Kalpana S.
description Nanoclay modified with unnatural amino acid was used to design a nanoclay‐hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two‐stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100–595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2077–2101, 2015.
doi_str_mv 10.1002/jbm.a.35342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685833237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676338076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4632-6bea21a31671794e58930abd86a1d1972d2a98bebe34a142d095305a2ee0d3d93</originalsourceid><addsrcrecordid>eNqNkctu1TAQhi1ERcuBFXsUiQ0SysH3JMu24la1YgNraxJPWh8lcbATlbCo-gg8I0-CwyldsEDd2Nb40zcz-gl5weiWUcrf7up-C1uhhOSPyBFTiuey0urx-pZVLnilD8nTGHcJ1lTxJ-SQKyEYZ_yI3Jw437sBA3TuB9rsarHBf19ghMlNmA0w-KaDJWt8P_q4lmIDbes7G7NrN11lo--WBsbgO2gmP2DW-pDFCfuswa77dfuzhpi89fo1uRhnzHC4TB0xuOHyGTlooYv4_O7ekK_v3305_Ziff_7w6fT4PG-kFjzXNQJnIJguWFFJVGUlKNS21MAsqwpuOVRljTUKCUxySyslqAKOSK2wldiQ13tvGvTbjHEyvYvrgDCgn6NhulSlEFwUD0GpVJqL8gFooYUoaTo35NU_6M7PYUg7r5QqZdpiFb7ZU03wMQZszRhcD2ExjJo1bJPCNmD-hJ3ol3fOue7R3rN_000A3wPXrsPlfy5zdnJxvLf-BrnCtxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675841978</pqid></control><display><type>article</type><title>Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell‐based bone tissue engineering</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ambre, Avinash H. ; Katti, Dinesh R. ; Katti, Kalpana S.</creator><creatorcontrib>Ambre, Avinash H. ; Katti, Dinesh R. ; Katti, Kalpana S.</creatorcontrib><description>Nanoclay modified with unnatural amino acid was used to design a nanoclay‐hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two‐stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100–595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2077–2101, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35342</identifier><identifier>PMID: 25331212</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alkaline Phosphatase - metabolism ; Aluminum Silicates - pharmacology ; Biomedical materials ; biomineralization ; Bone and Bones - drug effects ; Bone and Bones - physiology ; bone tissue engineering ; Bones ; Calcification, Physiologic - drug effects ; Cell Differentiation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; Compressive Strength - drug effects ; Durapatite - pharmacology ; Electrochemical machining ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Humans ; hydroxyapatite composite ; Imaging ; mesenchymal stem cell ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - ultrastructure ; nanoclay ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanostructure ; Particulate composites ; Polyesters - pharmacology ; Porosity ; Scaffolds ; Spectroscopy, Fourier Transform Infrared ; Staining and Labeling ; Surgical implants ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2015-06, Vol.103 (6), p.2077-2101</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4632-6bea21a31671794e58930abd86a1d1972d2a98bebe34a142d095305a2ee0d3d93</citedby><cites>FETCH-LOGICAL-c4632-6bea21a31671794e58930abd86a1d1972d2a98bebe34a142d095305a2ee0d3d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35342$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25331212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambre, Avinash H.</creatorcontrib><creatorcontrib>Katti, Dinesh R.</creatorcontrib><creatorcontrib>Katti, Kalpana S.</creatorcontrib><title>Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell‐based bone tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Nanoclay modified with unnatural amino acid was used to design a nanoclay‐hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two‐stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100–595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2077–2101, 2015.</description><subject>Alkaline Phosphatase - metabolism</subject><subject>Aluminum Silicates - pharmacology</subject><subject>Biomedical materials</subject><subject>biomineralization</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - physiology</subject><subject>bone tissue engineering</subject><subject>Bones</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Compressive Strength - drug effects</subject><subject>Durapatite - pharmacology</subject><subject>Electrochemical machining</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>hydroxyapatite composite</subject><subject>Imaging</subject><subject>mesenchymal stem cell</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - ultrastructure</subject><subject>nanoclay</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanostructure</subject><subject>Particulate composites</subject><subject>Polyesters - pharmacology</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Staining and Labeling</subject><subject>Surgical implants</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1TAQhi1ERcuBFXsUiQ0SysH3JMu24la1YgNraxJPWh8lcbATlbCo-gg8I0-CwyldsEDd2Nb40zcz-gl5weiWUcrf7up-C1uhhOSPyBFTiuey0urx-pZVLnilD8nTGHcJ1lTxJ-SQKyEYZ_yI3Jw437sBA3TuB9rsarHBf19ghMlNmA0w-KaDJWt8P_q4lmIDbes7G7NrN11lo--WBsbgO2gmP2DW-pDFCfuswa77dfuzhpi89fo1uRhnzHC4TB0xuOHyGTlooYv4_O7ekK_v3305_Ziff_7w6fT4PG-kFjzXNQJnIJguWFFJVGUlKNS21MAsqwpuOVRljTUKCUxySyslqAKOSK2wldiQ13tvGvTbjHEyvYvrgDCgn6NhulSlEFwUD0GpVJqL8gFooYUoaTo35NU_6M7PYUg7r5QqZdpiFb7ZU03wMQZszRhcD2ExjJo1bJPCNmD-hJ3ol3fOue7R3rN_000A3wPXrsPlfy5zdnJxvLf-BrnCtxI</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Ambre, Avinash H.</creator><creator>Katti, Dinesh R.</creator><creator>Katti, Kalpana S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QP</scope></search><sort><creationdate>201506</creationdate><title>Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell‐based bone tissue engineering</title><author>Ambre, Avinash H. ; Katti, Dinesh R. ; Katti, Kalpana S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4632-6bea21a31671794e58930abd86a1d1972d2a98bebe34a142d095305a2ee0d3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>Aluminum Silicates - pharmacology</topic><topic>Biomedical materials</topic><topic>biomineralization</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - physiology</topic><topic>bone tissue engineering</topic><topic>Bones</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Compressive Strength - drug effects</topic><topic>Durapatite - pharmacology</topic><topic>Electrochemical machining</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>hydroxyapatite composite</topic><topic>Imaging</topic><topic>mesenchymal stem cell</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - ultrastructure</topic><topic>nanoclay</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanostructure</topic><topic>Particulate composites</topic><topic>Polyesters - pharmacology</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Staining and Labeling</topic><topic>Surgical implants</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambre, Avinash H.</creatorcontrib><creatorcontrib>Katti, Dinesh R.</creatorcontrib><creatorcontrib>Katti, Kalpana S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambre, Avinash H.</au><au>Katti, Dinesh R.</au><au>Katti, Kalpana S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell‐based bone tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2015-06</date><risdate>2015</risdate><volume>103</volume><issue>6</issue><spage>2077</spage><epage>2101</epage><pages>2077-2101</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Nanoclay modified with unnatural amino acid was used to design a nanoclay‐hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two‐stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100–595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2077–2101, 2015.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25331212</pmid><doi>10.1002/jbm.a.35342</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2015-06, Vol.103 (6), p.2077-2101
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1685833237
source MEDLINE; Access via Wiley Online Library
subjects Alkaline Phosphatase - metabolism
Aluminum Silicates - pharmacology
Biomedical materials
biomineralization
Bone and Bones - drug effects
Bone and Bones - physiology
bone tissue engineering
Bones
Calcification, Physiologic - drug effects
Cell Differentiation - drug effects
Cell Survival - drug effects
Cells, Cultured
Compressive Strength - drug effects
Durapatite - pharmacology
Electrochemical machining
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Humans
hydroxyapatite composite
Imaging
mesenchymal stem cell
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - ultrastructure
nanoclay
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanostructure
Particulate composites
Polyesters - pharmacology
Porosity
Scaffolds
Spectroscopy, Fourier Transform Infrared
Staining and Labeling
Surgical implants
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell‐based bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomineralized%20hydroxyapatite%20nanoclay%20composite%20scaffolds%20with%20polycaprolactone%20for%20stem%20cell%E2%80%90based%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Ambre,%20Avinash%20H.&rft.date=2015-06&rft.volume=103&rft.issue=6&rft.spage=2077&rft.epage=2101&rft.pages=2077-2101&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35342&rft_dat=%3Cproquest_cross%3E1676338076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675841978&rft_id=info:pmid/25331212&rfr_iscdi=true