The Solution of an Integer Problem Based on Geometric Method

This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.496-500 (Frontiers of Manufacturing and Design Science IV), p.2852-2856
Hauptverfasser: Li, Wei Hua, Zhou, Jia Min, Guo, Jin Rui, Yang, Ren Er
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2856
container_issue Frontiers of Manufacturing and Design Science IV
container_start_page 2852
container_title Applied Mechanics and Materials
container_volume 496-500
creator Li, Wei Hua
Zhou, Jia Min
Guo, Jin Rui
Yang, Ren Er
description This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.
doi_str_mv 10.4028/www.scientific.net/AMM.496-500.2852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685832793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3664344221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cf5eaaa2a9ad8b047aa06af7bdf316812fea031ccc26b6e0928c1ed4a68b2eba3</originalsourceid><addsrcrecordid>eNqVkE1LxDAQhoMfoK7-h4IXQVrz0SYpeNHFL3BRUM9hmk7dSrfRJMvivze6guLN0xzel2dmHkKOGS1KyvXJarUqgu1xjH3X22LEeHI2mxVlLfOK0oLrim-QXSYlz1Wp-SY5qJUWVChd1TWXW18ZzWsh5A7ZC-GFUlmyUu-S08c5Zg9uWMbejZnrMhizmzHiM_rs3rtmwEV2DgHbLMVX6BYYfW-zGca5a_fJdgdDwIPvOSFPlxeP0-v89u7qZnp2m1shdMxtVyEAcKih1Q0tFQCV0Kmm7QSTmvEOgQpmreWykUhrri3DtgSpG44NiAk5WnNfvXtbYohm0QeLwwAjumUwCVJpwVX6b0IO_1Rf3NKP6brUUhUXTCmVWtN1y3oXgsfOvPp-Af7dMGo-jZtk3PwYN8m4ScZNMm6ScfNpPFEu1pToYQwR7fzXsn9wPgA4sJFn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675231777</pqid></control><display><type>article</type><title>The Solution of an Integer Problem Based on Geometric Method</title><source>Scientific.net Journals</source><creator>Li, Wei Hua ; Zhou, Jia Min ; Guo, Jin Rui ; Yang, Ren Er</creator><creatorcontrib>Li, Wei Hua ; Zhou, Jia Min ; Guo, Jin Rui ; Yang, Ren Er</creatorcontrib><description>This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859926</identifier><identifier>ISBN: 303785992X</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.496-500.2852</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Algebra ; Approximation ; Integers ; Mathematical models ; Optimization ; Quadratic equations</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.496-500 (Frontiers of Manufacturing and Design Science IV), p.2852-2856</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-cf5eaaa2a9ad8b047aa06af7bdf316812fea031ccc26b6e0928c1ed4a68b2eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2948?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Wei Hua</creatorcontrib><creatorcontrib>Zhou, Jia Min</creatorcontrib><creatorcontrib>Guo, Jin Rui</creatorcontrib><creatorcontrib>Yang, Ren Er</creatorcontrib><title>The Solution of an Integer Problem Based on Geometric Method</title><title>Applied Mechanics and Materials</title><description>This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Integers</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Quadratic equations</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859926</isbn><isbn>303785992X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkE1LxDAQhoMfoK7-h4IXQVrz0SYpeNHFL3BRUM9hmk7dSrfRJMvivze6guLN0xzel2dmHkKOGS1KyvXJarUqgu1xjH3X22LEeHI2mxVlLfOK0oLrim-QXSYlz1Wp-SY5qJUWVChd1TWXW18ZzWsh5A7ZC-GFUlmyUu-S08c5Zg9uWMbejZnrMhizmzHiM_rs3rtmwEV2DgHbLMVX6BYYfW-zGca5a_fJdgdDwIPvOSFPlxeP0-v89u7qZnp2m1shdMxtVyEAcKih1Q0tFQCV0Kmm7QSTmvEOgQpmreWykUhrri3DtgSpG44NiAk5WnNfvXtbYohm0QeLwwAjumUwCVJpwVX6b0IO_1Rf3NKP6brUUhUXTCmVWtN1y3oXgsfOvPp-Af7dMGo-jZtk3PwYN8m4ScZNMm6ScfNpPFEu1pToYQwR7fzXsn9wPgA4sJFn</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Li, Wei Hua</creator><creator>Zhou, Jia Min</creator><creator>Guo, Jin Rui</creator><creator>Yang, Ren Er</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>The Solution of an Integer Problem Based on Geometric Method</title><author>Li, Wei Hua ; Zhou, Jia Min ; Guo, Jin Rui ; Yang, Ren Er</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cf5eaaa2a9ad8b047aa06af7bdf316812fea031ccc26b6e0928c1ed4a68b2eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Integers</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Quadratic equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei Hua</creatorcontrib><creatorcontrib>Zhou, Jia Min</creatorcontrib><creatorcontrib>Guo, Jin Rui</creatorcontrib><creatorcontrib>Yang, Ren Er</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei Hua</au><au>Zhou, Jia Min</au><au>Guo, Jin Rui</au><au>Yang, Ren Er</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Solution of an Integer Problem Based on Geometric Method</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>496-500</volume><issue>Frontiers of Manufacturing and Design Science IV</issue><spage>2852</spage><epage>2856</epage><pages>2852-2856</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859926</isbn><isbn>303785992X</isbn><abstract>This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.496-500.2852</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-01, Vol.496-500 (Frontiers of Manufacturing and Design Science IV), p.2852-2856
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1685832793
source Scientific.net Journals
subjects Algebra
Approximation
Integers
Mathematical models
Optimization
Quadratic equations
title The Solution of an Integer Problem Based on Geometric Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Solution%20of%20an%20Integer%20Problem%20Based%20on%20Geometric%20Method&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Wei%20Hua&rft.date=2014-01-01&rft.volume=496-500&rft.issue=Frontiers%20of%20Manufacturing%20and%20Design%20Science%20IV&rft.spage=2852&rft.epage=2856&rft.pages=2852-2856&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859926&rft.isbn_list=303785992X&rft_id=info:doi/10.4028/www.scientific.net/AMM.496-500.2852&rft_dat=%3Cproquest_cross%3E3664344221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675231777&rft_id=info:pmid/&rfr_iscdi=true