The Solution of an Integer Problem Based on Geometric Method
This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regard...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-01, Vol.496-500 (Frontiers of Manufacturing and Design Science IV), p.2852-2856 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2856 |
---|---|
container_issue | Frontiers of Manufacturing and Design Science IV |
container_start_page | 2852 |
container_title | Applied Mechanics and Materials |
container_volume | 496-500 |
creator | Li, Wei Hua Zhou, Jia Min Guo, Jin Rui Yang, Ren Er |
description | This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach. |
doi_str_mv | 10.4028/www.scientific.net/AMM.496-500.2852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685832793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3664344221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cf5eaaa2a9ad8b047aa06af7bdf316812fea031ccc26b6e0928c1ed4a68b2eba3</originalsourceid><addsrcrecordid>eNqVkE1LxDAQhoMfoK7-h4IXQVrz0SYpeNHFL3BRUM9hmk7dSrfRJMvivze6guLN0xzel2dmHkKOGS1KyvXJarUqgu1xjH3X22LEeHI2mxVlLfOK0oLrim-QXSYlz1Wp-SY5qJUWVChd1TWXW18ZzWsh5A7ZC-GFUlmyUu-S08c5Zg9uWMbejZnrMhizmzHiM_rs3rtmwEV2DgHbLMVX6BYYfW-zGca5a_fJdgdDwIPvOSFPlxeP0-v89u7qZnp2m1shdMxtVyEAcKih1Q0tFQCV0Kmm7QSTmvEOgQpmreWykUhrri3DtgSpG44NiAk5WnNfvXtbYohm0QeLwwAjumUwCVJpwVX6b0IO_1Rf3NKP6brUUhUXTCmVWtN1y3oXgsfOvPp-Af7dMGo-jZtk3PwYN8m4ScZNMm6ScfNpPFEu1pToYQwR7fzXsn9wPgA4sJFn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675231777</pqid></control><display><type>article</type><title>The Solution of an Integer Problem Based on Geometric Method</title><source>Scientific.net Journals</source><creator>Li, Wei Hua ; Zhou, Jia Min ; Guo, Jin Rui ; Yang, Ren Er</creator><creatorcontrib>Li, Wei Hua ; Zhou, Jia Min ; Guo, Jin Rui ; Yang, Ren Er</creatorcontrib><description>This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859926</identifier><identifier>ISBN: 303785992X</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.496-500.2852</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Algebra ; Approximation ; Integers ; Mathematical models ; Optimization ; Quadratic equations</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.496-500 (Frontiers of Manufacturing and Design Science IV), p.2852-2856</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-cf5eaaa2a9ad8b047aa06af7bdf316812fea031ccc26b6e0928c1ed4a68b2eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2948?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Wei Hua</creatorcontrib><creatorcontrib>Zhou, Jia Min</creatorcontrib><creatorcontrib>Guo, Jin Rui</creatorcontrib><creatorcontrib>Yang, Ren Er</creatorcontrib><title>The Solution of an Integer Problem Based on Geometric Method</title><title>Applied Mechanics and Materials</title><description>This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Integers</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Quadratic equations</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859926</isbn><isbn>303785992X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkE1LxDAQhoMfoK7-h4IXQVrz0SYpeNHFL3BRUM9hmk7dSrfRJMvivze6guLN0xzel2dmHkKOGS1KyvXJarUqgu1xjH3X22LEeHI2mxVlLfOK0oLrim-QXSYlz1Wp-SY5qJUWVChd1TWXW18ZzWsh5A7ZC-GFUlmyUu-S08c5Zg9uWMbejZnrMhizmzHiM_rs3rtmwEV2DgHbLMVX6BYYfW-zGca5a_fJdgdDwIPvOSFPlxeP0-v89u7qZnp2m1shdMxtVyEAcKih1Q0tFQCV0Kmm7QSTmvEOgQpmreWykUhrri3DtgSpG44NiAk5WnNfvXtbYohm0QeLwwAjumUwCVJpwVX6b0IO_1Rf3NKP6brUUhUXTCmVWtN1y3oXgsfOvPp-Af7dMGo-jZtk3PwYN8m4ScZNMm6ScfNpPFEu1pToYQwR7fzXsn9wPgA4sJFn</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Li, Wei Hua</creator><creator>Zhou, Jia Min</creator><creator>Guo, Jin Rui</creator><creator>Yang, Ren Er</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>The Solution of an Integer Problem Based on Geometric Method</title><author>Li, Wei Hua ; Zhou, Jia Min ; Guo, Jin Rui ; Yang, Ren Er</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cf5eaaa2a9ad8b047aa06af7bdf316812fea031ccc26b6e0928c1ed4a68b2eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Integers</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Quadratic equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei Hua</creatorcontrib><creatorcontrib>Zhou, Jia Min</creatorcontrib><creatorcontrib>Guo, Jin Rui</creatorcontrib><creatorcontrib>Yang, Ren Er</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei Hua</au><au>Zhou, Jia Min</au><au>Guo, Jin Rui</au><au>Yang, Ren Er</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Solution of an Integer Problem Based on Geometric Method</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>496-500</volume><issue>Frontiers of Manufacturing and Design Science IV</issue><spage>2852</spage><epage>2856</epage><pages>2852-2856</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859926</isbn><isbn>303785992X</isbn><abstract>This paper studies the integer solution of the Markowitz mean-variance model. To avoid solving the quadratic equation with constraints directly, it uses geometric linear approximate method, and gives a practical and effective calculation method. Then it conducts the corresponding calculations regarding the real data, and reaches an optimal solution while the time of calculations is largely reduced, compared to the direct way and the algebraic approach.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.496-500.2852</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-01, Vol.496-500 (Frontiers of Manufacturing and Design Science IV), p.2852-2856 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685832793 |
source | Scientific.net Journals |
subjects | Algebra Approximation Integers Mathematical models Optimization Quadratic equations |
title | The Solution of an Integer Problem Based on Geometric Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Solution%20of%20an%20Integer%20Problem%20Based%20on%20Geometric%20Method&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Wei%20Hua&rft.date=2014-01-01&rft.volume=496-500&rft.issue=Frontiers%20of%20Manufacturing%20and%20Design%20Science%20IV&rft.spage=2852&rft.epage=2856&rft.pages=2852-2856&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859926&rft.isbn_list=303785992X&rft_id=info:doi/10.4028/www.scientific.net/AMM.496-500.2852&rft_dat=%3Cproquest_cross%3E3664344221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675231777&rft_id=info:pmid/&rfr_iscdi=true |