An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index

► Green leaf area index in maize can be estimated accurately using MODIS data. ► High spatial (250m) and temporal (8-day composite) resolutions are required for retrieval of crop LAI. ► WDRVI and EVI are the best predictors of maize green LAI. The seasonal patterns of green leaf area index (GLAI) ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology 2012-08, Vol.161, p.15-25
Hauptverfasser: Guindin-Garcia, Noemi, Gitelson, Anatoly A., Arkebauer, Timothy J., Shanahan, John, Weiss, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 15
container_title Agricultural and forest meteorology
container_volume 161
creator Guindin-Garcia, Noemi
Gitelson, Anatoly A.
Arkebauer, Timothy J.
Shanahan, John
Weiss, Albert
description ► Green leaf area index in maize can be estimated accurately using MODIS data. ► High spatial (250m) and temporal (8-day composite) resolutions are required for retrieval of crop LAI. ► WDRVI and EVI are the best predictors of maize green LAI. The seasonal patterns of green leaf area index (GLAI) can be used to assess crop physiological and phenological status, to assess yield potential, and to incorporate in crop simulation models. This study focused on examining the potential capabilities and limitations of satellite data retrieved from the moderate resolution imaging spectroradiometer (MODIS) 8- and 16-day composite products to quantitatively estimate GLAI over maize (Zea mays L.) fields. Results, based on the nine years of data used in this study, indicated a wide variability of temporal resolution obtained from MODIS 8- and 16-day composite periods and highlighted the importance of information about day of MODIS products pixel composite for monitoring agricultural crops. Due to high maize GLAI temporal variability, the inclusion of day of pixel composite is necessary to decrease substantial uncertainties in estimating GLAI. Results also indicated that maize GLAI can be accurately retrieved from the 250-m resolution MODIS products (MOD13Q1 and MOD09Q1) by a wide dynamic range vegetation index with root mean square error (RMSE) below 0.60m2m−2 or by the enhanced vegetation index with RMSE below 0.70m2m−2.
doi_str_mv 10.1016/j.agrformet.2012.03.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685816227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192312001219</els_id><sourcerecordid>1685816227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-4903700e49ceee5898334882cb70460bf930a3f60c7c9bc03649a6b811d42f7d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAUxCMEEkvhM9QXJC4Jz39iO8dVoVCpqIfSs-U4zyuvEnuxsxXl0-PVVr32NJffmzeaaZpLCh0FKr_uO7vLPuUF144BZR3wrsqbZkO14i1jAt42m0rqlg6Mv28-lLKHSig1bJpxGwk-2vlo15AiSZ78uvt2c090S2ycCJXtZJ-IS8shlbAiOeQ0Hd1aSP1IlhTDmnKIO7LY8A_JLiNGMqP1xGa0JMQJ_35s3nk7F_z0rBfNw_X331c_29u7HzdX29vW9UDXVgzAFQCKwSFirwfNudCauVGBkDD6gYPlXoJTbhgdcCkGK0dN6SSYVxO_aL6cfWvGP0csq1lCcTjPNmI6FlMb6DWVjKnXUWCgRW2OVlSdUZdTKRm9OeSw2PxUIXMawOzNywDmNIABbqrUy8_PT2xxdvbZRhfKyznrB5CCn8Jcnjlv08mqMg_31UjUkZTsNVRieyaw1vcYMJviAkaHU8joVjOl8Gqa_xMFpwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020842401</pqid></control><display><type>article</type><title>An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index</title><source>Elsevier ScienceDirect Journals</source><creator>Guindin-Garcia, Noemi ; Gitelson, Anatoly A. ; Arkebauer, Timothy J. ; Shanahan, John ; Weiss, Albert</creator><creatorcontrib>Guindin-Garcia, Noemi ; Gitelson, Anatoly A. ; Arkebauer, Timothy J. ; Shanahan, John ; Weiss, Albert</creatorcontrib><description>► Green leaf area index in maize can be estimated accurately using MODIS data. ► High spatial (250m) and temporal (8-day composite) resolutions are required for retrieval of crop LAI. ► WDRVI and EVI are the best predictors of maize green LAI. The seasonal patterns of green leaf area index (GLAI) can be used to assess crop physiological and phenological status, to assess yield potential, and to incorporate in crop simulation models. This study focused on examining the potential capabilities and limitations of satellite data retrieved from the moderate resolution imaging spectroradiometer (MODIS) 8- and 16-day composite products to quantitatively estimate GLAI over maize (Zea mays L.) fields. Results, based on the nine years of data used in this study, indicated a wide variability of temporal resolution obtained from MODIS 8- and 16-day composite periods and highlighted the importance of information about day of MODIS products pixel composite for monitoring agricultural crops. Due to high maize GLAI temporal variability, the inclusion of day of pixel composite is necessary to decrease substantial uncertainties in estimating GLAI. Results also indicated that maize GLAI can be accurately retrieved from the 250-m resolution MODIS products (MOD13Q1 and MOD09Q1) by a wide dynamic range vegetation index with root mean square error (RMSE) below 0.60m2m−2 or by the enhanced vegetation index with RMSE below 0.70m2m−2.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2012.03.012</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; corn ; crop models ; Crops ; Estimating ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Green leaf area index ; Leaf area index ; Maize ; moderate resolution imaging spectroradiometer ; MODIS ; Monitoring ; physiological state ; Pixels ; satellites ; seasonal variation ; Temporal resolution ; uncertainty ; Vegetation ; Vegetation indices ; Zea mays</subject><ispartof>Agricultural and forest meteorology, 2012-08, Vol.161, p.15-25</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-4903700e49ceee5898334882cb70460bf930a3f60c7c9bc03649a6b811d42f7d3</citedby><cites>FETCH-LOGICAL-c501t-4903700e49ceee5898334882cb70460bf930a3f60c7c9bc03649a6b811d42f7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.agrformet.2012.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25906437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guindin-Garcia, Noemi</creatorcontrib><creatorcontrib>Gitelson, Anatoly A.</creatorcontrib><creatorcontrib>Arkebauer, Timothy J.</creatorcontrib><creatorcontrib>Shanahan, John</creatorcontrib><creatorcontrib>Weiss, Albert</creatorcontrib><title>An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index</title><title>Agricultural and forest meteorology</title><description>► Green leaf area index in maize can be estimated accurately using MODIS data. ► High spatial (250m) and temporal (8-day composite) resolutions are required for retrieval of crop LAI. ► WDRVI and EVI are the best predictors of maize green LAI. The seasonal patterns of green leaf area index (GLAI) can be used to assess crop physiological and phenological status, to assess yield potential, and to incorporate in crop simulation models. This study focused on examining the potential capabilities and limitations of satellite data retrieved from the moderate resolution imaging spectroradiometer (MODIS) 8- and 16-day composite products to quantitatively estimate GLAI over maize (Zea mays L.) fields. Results, based on the nine years of data used in this study, indicated a wide variability of temporal resolution obtained from MODIS 8- and 16-day composite periods and highlighted the importance of information about day of MODIS products pixel composite for monitoring agricultural crops. Due to high maize GLAI temporal variability, the inclusion of day of pixel composite is necessary to decrease substantial uncertainties in estimating GLAI. Results also indicated that maize GLAI can be accurately retrieved from the 250-m resolution MODIS products (MOD13Q1 and MOD09Q1) by a wide dynamic range vegetation index with root mean square error (RMSE) below 0.60m2m−2 or by the enhanced vegetation index with RMSE below 0.70m2m−2.</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>corn</subject><subject>crop models</subject><subject>Crops</subject><subject>Estimating</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Green leaf area index</subject><subject>Leaf area index</subject><subject>Maize</subject><subject>moderate resolution imaging spectroradiometer</subject><subject>MODIS</subject><subject>Monitoring</subject><subject>physiological state</subject><subject>Pixels</subject><subject>satellites</subject><subject>seasonal variation</subject><subject>Temporal resolution</subject><subject>uncertainty</subject><subject>Vegetation</subject><subject>Vegetation indices</subject><subject>Zea mays</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAUxCMEEkvhM9QXJC4Jz39iO8dVoVCpqIfSs-U4zyuvEnuxsxXl0-PVVr32NJffmzeaaZpLCh0FKr_uO7vLPuUF144BZR3wrsqbZkO14i1jAt42m0rqlg6Mv28-lLKHSig1bJpxGwk-2vlo15AiSZ78uvt2c090S2ycCJXtZJ-IS8shlbAiOeQ0Hd1aSP1IlhTDmnKIO7LY8A_JLiNGMqP1xGa0JMQJ_35s3nk7F_z0rBfNw_X331c_29u7HzdX29vW9UDXVgzAFQCKwSFirwfNudCauVGBkDD6gYPlXoJTbhgdcCkGK0dN6SSYVxO_aL6cfWvGP0csq1lCcTjPNmI6FlMb6DWVjKnXUWCgRW2OVlSdUZdTKRm9OeSw2PxUIXMawOzNywDmNIABbqrUy8_PT2xxdvbZRhfKyznrB5CCn8Jcnjlv08mqMg_31UjUkZTsNVRieyaw1vcYMJviAkaHU8joVjOl8Gqa_xMFpwU</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Guindin-Garcia, Noemi</creator><creator>Gitelson, Anatoly A.</creator><creator>Arkebauer, Timothy J.</creator><creator>Shanahan, John</creator><creator>Weiss, Albert</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120815</creationdate><title>An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index</title><author>Guindin-Garcia, Noemi ; Gitelson, Anatoly A. ; Arkebauer, Timothy J. ; Shanahan, John ; Weiss, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-4903700e49ceee5898334882cb70460bf930a3f60c7c9bc03649a6b811d42f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>corn</topic><topic>crop models</topic><topic>Crops</topic><topic>Estimating</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Green leaf area index</topic><topic>Leaf area index</topic><topic>Maize</topic><topic>moderate resolution imaging spectroradiometer</topic><topic>MODIS</topic><topic>Monitoring</topic><topic>physiological state</topic><topic>Pixels</topic><topic>satellites</topic><topic>seasonal variation</topic><topic>Temporal resolution</topic><topic>uncertainty</topic><topic>Vegetation</topic><topic>Vegetation indices</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guindin-Garcia, Noemi</creatorcontrib><creatorcontrib>Gitelson, Anatoly A.</creatorcontrib><creatorcontrib>Arkebauer, Timothy J.</creatorcontrib><creatorcontrib>Shanahan, John</creatorcontrib><creatorcontrib>Weiss, Albert</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guindin-Garcia, Noemi</au><au>Gitelson, Anatoly A.</au><au>Arkebauer, Timothy J.</au><au>Shanahan, John</au><au>Weiss, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2012-08-15</date><risdate>2012</risdate><volume>161</volume><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>► Green leaf area index in maize can be estimated accurately using MODIS data. ► High spatial (250m) and temporal (8-day composite) resolutions are required for retrieval of crop LAI. ► WDRVI and EVI are the best predictors of maize green LAI. The seasonal patterns of green leaf area index (GLAI) can be used to assess crop physiological and phenological status, to assess yield potential, and to incorporate in crop simulation models. This study focused on examining the potential capabilities and limitations of satellite data retrieved from the moderate resolution imaging spectroradiometer (MODIS) 8- and 16-day composite products to quantitatively estimate GLAI over maize (Zea mays L.) fields. Results, based on the nine years of data used in this study, indicated a wide variability of temporal resolution obtained from MODIS 8- and 16-day composite periods and highlighted the importance of information about day of MODIS products pixel composite for monitoring agricultural crops. Due to high maize GLAI temporal variability, the inclusion of day of pixel composite is necessary to decrease substantial uncertainties in estimating GLAI. Results also indicated that maize GLAI can be accurately retrieved from the 250-m resolution MODIS products (MOD13Q1 and MOD09Q1) by a wide dynamic range vegetation index with root mean square error (RMSE) below 0.60m2m−2 or by the enhanced vegetation index with RMSE below 0.70m2m−2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2012.03.012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 2012-08, Vol.161, p.15-25
issn 0168-1923
1873-2240
language eng
recordid cdi_proquest_miscellaneous_1685816227
source Elsevier ScienceDirect Journals
subjects Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agronomy. Soil science and plant productions
Biological and medical sciences
corn
crop models
Crops
Estimating
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Green leaf area index
Leaf area index
Maize
moderate resolution imaging spectroradiometer
MODIS
Monitoring
physiological state
Pixels
satellites
seasonal variation
Temporal resolution
uncertainty
Vegetation
Vegetation indices
Zea mays
title An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20MODIS%208-%20and%2016-day%20composite%20products%20for%20monitoring%20maize%20green%20leaf%20area%20index&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Guindin-Garcia,%20Noemi&rft.date=2012-08-15&rft.volume=161&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/j.agrformet.2012.03.012&rft_dat=%3Cproquest_cross%3E1685816227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020842401&rft_id=info:pmid/&rft_els_id=S0168192312001219&rfr_iscdi=true