Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase

A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2013-02, Vol.35 (2), p.253-258
Hauptverfasser: Kojima, Katsuhiro, Mikami-Sakaguchi, Akane, Kameya, Miho, Miyamoto, Yusuke, Ferri, Stefano, Tsugawa, Wakako, Sode, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 2
container_start_page 253
container_title Biotechnology letters
container_volume 35
creator Kojima, Katsuhiro
Mikami-Sakaguchi, Akane
Kameya, Miho
Miyamoto, Yusuke
Ferri, Stefano
Tsugawa, Wakako
Sode, Koji
description A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isolated from Thermus thermophilus as template. The putative active site region was then investigated by site-directed mutagenesis to reveal several amino acid residues that likely play important roles in the enzyme reaction. Met220 was identified as a residue that plays a role in substrate recognition when compared to Bacillus subtilis derived FN6K, which shows different substrate specificity from the E. coli FN6K. Among the various Met220-substituted mutant enzymes, Met220Leu, which corresponded to the B. subtilis residue, resulted in an increased activity of fructosyl-valine and decreased activity of fructosyl-lysine, thus increasing the specificity for fructosyl-valine by 40-fold.
doi_str_mv 10.1007/s10529-012-1062-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685815961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1291622982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-95d796e9183986444200de2c12c49cdbc4b7a946849b74d02b4b856f2b6afe63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EapfCD-ACkXrhYjoz8Ud8RFULSJV62PZsOY6zddlNFjtB6r_Hq7QIcWhP1kjP-448D2MfEL4ggD7LCJIMBySOoIibV2yFUtdcaa1esxWgQC6FoWP2Nud7ADAa9BE7phq0qhWt2Ho9t3lKbgpV3gcf--jj9FCFYROHEFIcNtXYVxfZ35XB30VX-XEbq65Mv0NX9Wn205jdrtCV4j_j4HJ4x970bpvD-8f3hN1cXtycf-dX199-nH-94l5KmriRnTYqGGxq0yghBAF0gTySF8Z3rRetdkaoRphWiw6oFW0jVU-tcn1Q9Qn7vNTu0_hrDnmyu5h92G7dEMY5W1SNbFAahS-jZFARmYYKevofej_OaSj_KJQmMBLNoRAXyqcx5xR6u09x59KDRbAHN3ZxY4sbe3BjTcl8fGye213o_iaeZBSAFiDvD4cP6Z_Vz7R-WkK9G63bpJjt7ZqK-WJbSFU3zxKky-3rPzH9qjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272095191</pqid></control><display><type>article</type><title>Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Kojima, Katsuhiro ; Mikami-Sakaguchi, Akane ; Kameya, Miho ; Miyamoto, Yusuke ; Ferri, Stefano ; Tsugawa, Wakako ; Sode, Koji</creator><creatorcontrib>Kojima, Katsuhiro ; Mikami-Sakaguchi, Akane ; Kameya, Miho ; Miyamoto, Yusuke ; Ferri, Stefano ; Tsugawa, Wakako ; Sode, Koji</creatorcontrib><description>A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isolated from Thermus thermophilus as template. The putative active site region was then investigated by site-directed mutagenesis to reveal several amino acid residues that likely play important roles in the enzyme reaction. Met220 was identified as a residue that plays a role in substrate recognition when compared to Bacillus subtilis derived FN6K, which shows different substrate specificity from the E. coli FN6K. Among the various Met220-substituted mutant enzymes, Met220Leu, which corresponded to the B. subtilis residue, resulted in an increased activity of fructosyl-valine and decreased activity of fructosyl-lysine, thus increasing the specificity for fructosyl-valine by 40-fold.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-012-1062-9</identifier><identifier>PMID: 23076362</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Amino Acid Substitution ; Amino acids ; Applied Microbiology ; Bacillus subtilis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Catalytic Domain ; Crystal structure ; E coli ; engineering ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Fructosamine - metabolism ; Kinases ; Life Sciences ; Lysine - analogs &amp; derivatives ; Lysine - metabolism ; Metabolic Engineering ; Microbiology ; Models, Molecular ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; mutants ; Original Research Paper ; Phosphotransferases - genetics ; Phosphotransferases - metabolism ; Protein Engineering ; Residues ; site-directed mutagenesis ; Substrate Specificity ; Substrates ; Thermus thermophilus ; Three dimensional models ; Valine - analogs &amp; derivatives ; Valine - metabolism</subject><ispartof>Biotechnology letters, 2013-02, Vol.35 (2), p.253-258</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-95d796e9183986444200de2c12c49cdbc4b7a946849b74d02b4b856f2b6afe63</citedby><cites>FETCH-LOGICAL-c552t-95d796e9183986444200de2c12c49cdbc4b7a946849b74d02b4b856f2b6afe63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-012-1062-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-012-1062-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23076362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kojima, Katsuhiro</creatorcontrib><creatorcontrib>Mikami-Sakaguchi, Akane</creatorcontrib><creatorcontrib>Kameya, Miho</creatorcontrib><creatorcontrib>Miyamoto, Yusuke</creatorcontrib><creatorcontrib>Ferri, Stefano</creatorcontrib><creatorcontrib>Tsugawa, Wakako</creatorcontrib><creatorcontrib>Sode, Koji</creatorcontrib><title>Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isolated from Thermus thermophilus as template. The putative active site region was then investigated by site-directed mutagenesis to reveal several amino acid residues that likely play important roles in the enzyme reaction. Met220 was identified as a residue that plays a role in substrate recognition when compared to Bacillus subtilis derived FN6K, which shows different substrate specificity from the E. coli FN6K. Among the various Met220-substituted mutant enzymes, Met220Leu, which corresponded to the B. subtilis residue, resulted in an increased activity of fructosyl-valine and decreased activity of fructosyl-lysine, thus increasing the specificity for fructosyl-valine by 40-fold.</description><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Applied Microbiology</subject><subject>Bacillus subtilis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Catalytic Domain</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>engineering</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Fructosamine - metabolism</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lysine - analogs &amp; derivatives</subject><subject>Lysine - metabolism</subject><subject>Metabolic Engineering</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>mutants</subject><subject>Original Research Paper</subject><subject>Phosphotransferases - genetics</subject><subject>Phosphotransferases - metabolism</subject><subject>Protein Engineering</subject><subject>Residues</subject><subject>site-directed mutagenesis</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermus thermophilus</subject><subject>Three dimensional models</subject><subject>Valine - analogs &amp; derivatives</subject><subject>Valine - metabolism</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EapfCD-ACkXrhYjoz8Ud8RFULSJV62PZsOY6zddlNFjtB6r_Hq7QIcWhP1kjP-448D2MfEL4ggD7LCJIMBySOoIibV2yFUtdcaa1esxWgQC6FoWP2Nud7ADAa9BE7phq0qhWt2Ho9t3lKbgpV3gcf--jj9FCFYROHEFIcNtXYVxfZ35XB30VX-XEbq65Mv0NX9Wn205jdrtCV4j_j4HJ4x970bpvD-8f3hN1cXtycf-dX199-nH-94l5KmriRnTYqGGxq0yghBAF0gTySF8Z3rRetdkaoRphWiw6oFW0jVU-tcn1Q9Qn7vNTu0_hrDnmyu5h92G7dEMY5W1SNbFAahS-jZFARmYYKevofej_OaSj_KJQmMBLNoRAXyqcx5xR6u09x59KDRbAHN3ZxY4sbe3BjTcl8fGye213o_iaeZBSAFiDvD4cP6Z_Vz7R-WkK9G63bpJjt7ZqK-WJbSFU3zxKky-3rPzH9qjY</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Kojima, Katsuhiro</creator><creator>Mikami-Sakaguchi, Akane</creator><creator>Kameya, Miho</creator><creator>Miyamoto, Yusuke</creator><creator>Ferri, Stefano</creator><creator>Tsugawa, Wakako</creator><creator>Sode, Koji</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20130201</creationdate><title>Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase</title><author>Kojima, Katsuhiro ; Mikami-Sakaguchi, Akane ; Kameya, Miho ; Miyamoto, Yusuke ; Ferri, Stefano ; Tsugawa, Wakako ; Sode, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-95d796e9183986444200de2c12c49cdbc4b7a946849b74d02b4b856f2b6afe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Applied Microbiology</topic><topic>Bacillus subtilis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Catalytic Domain</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>engineering</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Fructosamine - metabolism</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lysine - analogs &amp; derivatives</topic><topic>Lysine - metabolism</topic><topic>Metabolic Engineering</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>mutants</topic><topic>Original Research Paper</topic><topic>Phosphotransferases - genetics</topic><topic>Phosphotransferases - metabolism</topic><topic>Protein Engineering</topic><topic>Residues</topic><topic>site-directed mutagenesis</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermus thermophilus</topic><topic>Three dimensional models</topic><topic>Valine - analogs &amp; derivatives</topic><topic>Valine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kojima, Katsuhiro</creatorcontrib><creatorcontrib>Mikami-Sakaguchi, Akane</creatorcontrib><creatorcontrib>Kameya, Miho</creatorcontrib><creatorcontrib>Miyamoto, Yusuke</creatorcontrib><creatorcontrib>Ferri, Stefano</creatorcontrib><creatorcontrib>Tsugawa, Wakako</creatorcontrib><creatorcontrib>Sode, Koji</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kojima, Katsuhiro</au><au>Mikami-Sakaguchi, Akane</au><au>Kameya, Miho</au><au>Miyamoto, Yusuke</au><au>Ferri, Stefano</au><au>Tsugawa, Wakako</au><au>Sode, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>35</volume><issue>2</issue><spage>253</spage><epage>258</epage><pages>253-258</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isolated from Thermus thermophilus as template. The putative active site region was then investigated by site-directed mutagenesis to reveal several amino acid residues that likely play important roles in the enzyme reaction. Met220 was identified as a residue that plays a role in substrate recognition when compared to Bacillus subtilis derived FN6K, which shows different substrate specificity from the E. coli FN6K. Among the various Met220-substituted mutant enzymes, Met220Leu, which corresponded to the B. subtilis residue, resulted in an increased activity of fructosyl-valine and decreased activity of fructosyl-lysine, thus increasing the specificity for fructosyl-valine by 40-fold.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>23076362</pmid><doi>10.1007/s10529-012-1062-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2013-02, Vol.35 (2), p.253-258
issn 0141-5492
1573-6776
language eng
recordid cdi_proquest_miscellaneous_1685815961
source MEDLINE; Springer Online Journals Complete
subjects Amino Acid Substitution
Amino acids
Applied Microbiology
Bacillus subtilis
Biochemistry
Biomedical and Life Sciences
Biotechnology
Catalytic Domain
Crystal structure
E coli
engineering
Enzymes
Escherichia coli
Escherichia coli - enzymology
Fructosamine - metabolism
Kinases
Life Sciences
Lysine - analogs & derivatives
Lysine - metabolism
Metabolic Engineering
Microbiology
Models, Molecular
Mutagenesis
Mutagenesis, Site-Directed
Mutant Proteins - genetics
Mutant Proteins - metabolism
mutants
Original Research Paper
Phosphotransferases - genetics
Phosphotransferases - metabolism
Protein Engineering
Residues
site-directed mutagenesis
Substrate Specificity
Substrates
Thermus thermophilus
Three dimensional models
Valine - analogs & derivatives
Valine - metabolism
title Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20specificity%20engineering%20of%20Escherichia%20coli%20derived%20fructosamine%206-kinase&rft.jtitle=Biotechnology%20letters&rft.au=Kojima,%20Katsuhiro&rft.date=2013-02-01&rft.volume=35&rft.issue=2&rft.spage=253&rft.epage=258&rft.pages=253-258&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-012-1062-9&rft_dat=%3Cproquest_cross%3E1291622982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272095191&rft_id=info:pmid/23076362&rfr_iscdi=true