Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF
A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify th...
Gespeichert in:
Veröffentlicht in: | Journal of iron and steel research, international international, 2011-09, Vol.18 (9), p.13-20 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 9 |
container_start_page | 13 |
container_title | Journal of iron and steel research, international |
container_volume | 18 |
creator | HE, Chun-lai ZHU, Rong DONG, Kai QIU, Yong-quan SUN, Kai-ming |
description | A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model. |
doi_str_mv | 10.1016/S1006-706X(12)60028-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685814503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39330535</cqvip_id><els_id>S1006706X12600284</els_id><sourcerecordid>1685814503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</originalsourceid><addsrcrecordid>eNqFkM1O4zAUha0RSFMBjzCSZ8csMlzHP7VXI0D8CsSiLNhZjnNTglK72Cka3h6HIrb1xjrS911fH0J-MfjLgKmTBQNQ1RzU0zGr_yiAWlfiB5nVNYOKG633yOwb-UmOcn6B6RjFaz0jV_exxaEPSxo76gK9Wa1LmPLD__clBnqLI42B3sdhLOnMjc90sUmd80j7QJkEOtKL08tDst-5IePR131AFpcXj-fX1d3D1c356V3lhdBjpUTbANdmLlnjeG2wMQqarq2Fb5hpOymc6zwiA2y09gKMlLpxZs4NaM8PyPF26jrF1w3m0a767HEYXMC4yZYpLTUTEvhuFJhRkikxoXKL-hRzTtjZdepXLr0XaOKU_SzZTg1aVtvPkq0ontp6ufBhicm-xE0K5fs7xX9bEUtTb30Rs-8xeGz7hH60bex3Tvj9tfJzDMvX8vr3ztxwDpJL_gGm-5yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019651643</pqid></control><display><type>article</type><title>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</title><source>Elsevier ScienceDirect Journals</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>HE, Chun-lai ; ZHU, Rong ; DONG, Kai ; QIU, Yong-quan ; SUN, Kai-ming</creator><creatorcontrib>HE, Chun-lai ; ZHU, Rong ; DONG, Kai ; QIU, Yong-quan ; SUN, Kai-ming</creatorcontrib><description>A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.</description><identifier>ISSN: 1006-706X</identifier><identifier>EISSN: 2210-3988</identifier><identifier>DOI: 10.1016/S1006-706X(12)60028-4</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Applied and Technical Physics ; Computer simulation ; electric arc furnace ; Engineering ; Flow rate ; Fluid dynamics ; Iron and steel industry ; Iron and steel making ; Machines ; Manufacturing ; Materials Engineering ; Materials Science ; Mathematical models ; Metallic Materials ; numerical simulation ; Physical Chemistry ; Processes ; Slags ; Steels ; three-phase flow ; 射流穿透深度 ; 建模 ; 撞击 ; 数值模拟 ; 氧气射流 ; 水模型实验 ; 熔池 ; 表面</subject><ispartof>Journal of iron and steel research, international, 2011-09, Vol.18 (9), p.13-20</ispartof><rights>2011 Central Iron and Steel Research Institute</rights><rights>China Iron and Steel Research Institute Group 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</citedby><cites>FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86787X/86787X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1006-706X(12)60028-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1006-706X(12)60028-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,41467,42536,45974,51298</link.rule.ids></links><search><creatorcontrib>HE, Chun-lai</creatorcontrib><creatorcontrib>ZHU, Rong</creatorcontrib><creatorcontrib>DONG, Kai</creatorcontrib><creatorcontrib>QIU, Yong-quan</creatorcontrib><creatorcontrib>SUN, Kai-ming</creatorcontrib><title>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</title><title>Journal of iron and steel research, international</title><addtitle>J. Iron Steel Res. Int</addtitle><addtitle>Journal of Iron and Steel Research</addtitle><description>A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.</description><subject>Applied and Technical Physics</subject><subject>Computer simulation</subject><subject>electric arc furnace</subject><subject>Engineering</subject><subject>Flow rate</subject><subject>Fluid dynamics</subject><subject>Iron and steel industry</subject><subject>Iron and steel making</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>numerical simulation</subject><subject>Physical Chemistry</subject><subject>Processes</subject><subject>Slags</subject><subject>Steels</subject><subject>three-phase flow</subject><subject>射流穿透深度</subject><subject>建模</subject><subject>撞击</subject><subject>数值模拟</subject><subject>氧气射流</subject><subject>水模型实验</subject><subject>熔池</subject><subject>表面</subject><issn>1006-706X</issn><issn>2210-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O4zAUha0RSFMBjzCSZ8csMlzHP7VXI0D8CsSiLNhZjnNTglK72Cka3h6HIrb1xjrS911fH0J-MfjLgKmTBQNQ1RzU0zGr_yiAWlfiB5nVNYOKG633yOwb-UmOcn6B6RjFaz0jV_exxaEPSxo76gK9Wa1LmPLD__clBnqLI42B3sdhLOnMjc90sUmd80j7QJkEOtKL08tDst-5IePR131AFpcXj-fX1d3D1c356V3lhdBjpUTbANdmLlnjeG2wMQqarq2Fb5hpOymc6zwiA2y09gKMlLpxZs4NaM8PyPF26jrF1w3m0a767HEYXMC4yZYpLTUTEvhuFJhRkikxoXKL-hRzTtjZdepXLr0XaOKU_SzZTg1aVtvPkq0ontp6ufBhicm-xE0K5fs7xX9bEUtTb30Rs-8xeGz7hH60bex3Tvj9tfJzDMvX8vr3ztxwDpJL_gGm-5yA</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>HE, Chun-lai</creator><creator>ZHU, Rong</creator><creator>DONG, Kai</creator><creator>QIU, Yong-quan</creator><creator>SUN, Kai-ming</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110901</creationdate><title>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</title><author>HE, Chun-lai ; ZHU, Rong ; DONG, Kai ; QIU, Yong-quan ; SUN, Kai-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied and Technical Physics</topic><topic>Computer simulation</topic><topic>electric arc furnace</topic><topic>Engineering</topic><topic>Flow rate</topic><topic>Fluid dynamics</topic><topic>Iron and steel industry</topic><topic>Iron and steel making</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>numerical simulation</topic><topic>Physical Chemistry</topic><topic>Processes</topic><topic>Slags</topic><topic>Steels</topic><topic>three-phase flow</topic><topic>射流穿透深度</topic><topic>建模</topic><topic>撞击</topic><topic>数值模拟</topic><topic>氧气射流</topic><topic>水模型实验</topic><topic>熔池</topic><topic>表面</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HE, Chun-lai</creatorcontrib><creatorcontrib>ZHU, Rong</creatorcontrib><creatorcontrib>DONG, Kai</creatorcontrib><creatorcontrib>QIU, Yong-quan</creatorcontrib><creatorcontrib>SUN, Kai-ming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of iron and steel research, international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HE, Chun-lai</au><au>ZHU, Rong</au><au>DONG, Kai</au><au>QIU, Yong-quan</au><au>SUN, Kai-ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</atitle><jtitle>Journal of iron and steel research, international</jtitle><stitle>J. Iron Steel Res. Int</stitle><addtitle>Journal of Iron and Steel Research</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>18</volume><issue>9</issue><spage>13</spage><epage>20</epage><pages>13-20</pages><issn>1006-706X</issn><eissn>2210-3988</eissn><abstract>A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1006-706X(12)60028-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-706X |
ispartof | Journal of iron and steel research, international, 2011-09, Vol.18 (9), p.13-20 |
issn | 1006-706X 2210-3988 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685814503 |
source | Elsevier ScienceDirect Journals; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applied and Technical Physics Computer simulation electric arc furnace Engineering Flow rate Fluid dynamics Iron and steel industry Iron and steel making Machines Manufacturing Materials Engineering Materials Science Mathematical models Metallic Materials numerical simulation Physical Chemistry Processes Slags Steels three-phase flow 射流穿透深度 建模 撞击 数值模拟 氧气射流 水模型实验 熔池 表面 |
title | Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20an%20Impinging%20Oxygen%20Jet%20on%20Molten%20Bath%20Surface%20in%20150%20t%20EAF&rft.jtitle=Journal%20of%20iron%20and%20steel%20research,%20international&rft.au=HE,%20Chun-lai&rft.date=2011-09-01&rft.volume=18&rft.issue=9&rft.spage=13&rft.epage=20&rft.pages=13-20&rft.issn=1006-706X&rft.eissn=2210-3988&rft_id=info:doi/10.1016/S1006-706X(12)60028-4&rft_dat=%3Cproquest_cross%3E1685814503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019651643&rft_id=info:pmid/&rft_cqvip_id=39330535&rft_els_id=S1006706X12600284&rfr_iscdi=true |