Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF

A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international international, 2011-09, Vol.18 (9), p.13-20
Hauptverfasser: HE, Chun-lai, ZHU, Rong, DONG, Kai, QIU, Yong-quan, SUN, Kai-ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 9
container_start_page 13
container_title Journal of iron and steel research, international
container_volume 18
creator HE, Chun-lai
ZHU, Rong
DONG, Kai
QIU, Yong-quan
SUN, Kai-ming
description A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.
doi_str_mv 10.1016/S1006-706X(12)60028-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685814503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39330535</cqvip_id><els_id>S1006706X12600284</els_id><sourcerecordid>1685814503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</originalsourceid><addsrcrecordid>eNqFkM1O4zAUha0RSFMBjzCSZ8csMlzHP7VXI0D8CsSiLNhZjnNTglK72Cka3h6HIrb1xjrS911fH0J-MfjLgKmTBQNQ1RzU0zGr_yiAWlfiB5nVNYOKG633yOwb-UmOcn6B6RjFaz0jV_exxaEPSxo76gK9Wa1LmPLD__clBnqLI42B3sdhLOnMjc90sUmd80j7QJkEOtKL08tDst-5IePR131AFpcXj-fX1d3D1c356V3lhdBjpUTbANdmLlnjeG2wMQqarq2Fb5hpOymc6zwiA2y09gKMlLpxZs4NaM8PyPF26jrF1w3m0a767HEYXMC4yZYpLTUTEvhuFJhRkikxoXKL-hRzTtjZdepXLr0XaOKU_SzZTg1aVtvPkq0ontp6ufBhicm-xE0K5fs7xX9bEUtTb30Rs-8xeGz7hH60bex3Tvj9tfJzDMvX8vr3ztxwDpJL_gGm-5yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019651643</pqid></control><display><type>article</type><title>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</title><source>Elsevier ScienceDirect Journals</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>HE, Chun-lai ; ZHU, Rong ; DONG, Kai ; QIU, Yong-quan ; SUN, Kai-ming</creator><creatorcontrib>HE, Chun-lai ; ZHU, Rong ; DONG, Kai ; QIU, Yong-quan ; SUN, Kai-ming</creatorcontrib><description>A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.</description><identifier>ISSN: 1006-706X</identifier><identifier>EISSN: 2210-3988</identifier><identifier>DOI: 10.1016/S1006-706X(12)60028-4</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Applied and Technical Physics ; Computer simulation ; electric arc furnace ; Engineering ; Flow rate ; Fluid dynamics ; Iron and steel industry ; Iron and steel making ; Machines ; Manufacturing ; Materials Engineering ; Materials Science ; Mathematical models ; Metallic Materials ; numerical simulation ; Physical Chemistry ; Processes ; Slags ; Steels ; three-phase flow ; 射流穿透深度 ; 建模 ; 撞击 ; 数值模拟 ; 氧气射流 ; 水模型实验 ; 熔池 ; 表面</subject><ispartof>Journal of iron and steel research, international, 2011-09, Vol.18 (9), p.13-20</ispartof><rights>2011 Central Iron and Steel Research Institute</rights><rights>China Iron and Steel Research Institute Group 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</citedby><cites>FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86787X/86787X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1006-706X(12)60028-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1006-706X(12)60028-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,41467,42536,45974,51298</link.rule.ids></links><search><creatorcontrib>HE, Chun-lai</creatorcontrib><creatorcontrib>ZHU, Rong</creatorcontrib><creatorcontrib>DONG, Kai</creatorcontrib><creatorcontrib>QIU, Yong-quan</creatorcontrib><creatorcontrib>SUN, Kai-ming</creatorcontrib><title>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</title><title>Journal of iron and steel research, international</title><addtitle>J. Iron Steel Res. Int</addtitle><addtitle>Journal of Iron and Steel Research</addtitle><description>A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.</description><subject>Applied and Technical Physics</subject><subject>Computer simulation</subject><subject>electric arc furnace</subject><subject>Engineering</subject><subject>Flow rate</subject><subject>Fluid dynamics</subject><subject>Iron and steel industry</subject><subject>Iron and steel making</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>numerical simulation</subject><subject>Physical Chemistry</subject><subject>Processes</subject><subject>Slags</subject><subject>Steels</subject><subject>three-phase flow</subject><subject>射流穿透深度</subject><subject>建模</subject><subject>撞击</subject><subject>数值模拟</subject><subject>氧气射流</subject><subject>水模型实验</subject><subject>熔池</subject><subject>表面</subject><issn>1006-706X</issn><issn>2210-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O4zAUha0RSFMBjzCSZ8csMlzHP7VXI0D8CsSiLNhZjnNTglK72Cka3h6HIrb1xjrS911fH0J-MfjLgKmTBQNQ1RzU0zGr_yiAWlfiB5nVNYOKG633yOwb-UmOcn6B6RjFaz0jV_exxaEPSxo76gK9Wa1LmPLD__clBnqLI42B3sdhLOnMjc90sUmd80j7QJkEOtKL08tDst-5IePR131AFpcXj-fX1d3D1c356V3lhdBjpUTbANdmLlnjeG2wMQqarq2Fb5hpOymc6zwiA2y09gKMlLpxZs4NaM8PyPF26jrF1w3m0a767HEYXMC4yZYpLTUTEvhuFJhRkikxoXKL-hRzTtjZdepXLr0XaOKU_SzZTg1aVtvPkq0ontp6ufBhicm-xE0K5fs7xX9bEUtTb30Rs-8xeGz7hH60bex3Tvj9tfJzDMvX8vr3ztxwDpJL_gGm-5yA</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>HE, Chun-lai</creator><creator>ZHU, Rong</creator><creator>DONG, Kai</creator><creator>QIU, Yong-quan</creator><creator>SUN, Kai-ming</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110901</creationdate><title>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</title><author>HE, Chun-lai ; ZHU, Rong ; DONG, Kai ; QIU, Yong-quan ; SUN, Kai-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-64db0389751ba329eb960bfd24cb19df54aafcee10eb88c409558ba973908c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied and Technical Physics</topic><topic>Computer simulation</topic><topic>electric arc furnace</topic><topic>Engineering</topic><topic>Flow rate</topic><topic>Fluid dynamics</topic><topic>Iron and steel industry</topic><topic>Iron and steel making</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>numerical simulation</topic><topic>Physical Chemistry</topic><topic>Processes</topic><topic>Slags</topic><topic>Steels</topic><topic>three-phase flow</topic><topic>射流穿透深度</topic><topic>建模</topic><topic>撞击</topic><topic>数值模拟</topic><topic>氧气射流</topic><topic>水模型实验</topic><topic>熔池</topic><topic>表面</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HE, Chun-lai</creatorcontrib><creatorcontrib>ZHU, Rong</creatorcontrib><creatorcontrib>DONG, Kai</creatorcontrib><creatorcontrib>QIU, Yong-quan</creatorcontrib><creatorcontrib>SUN, Kai-ming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of iron and steel research, international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HE, Chun-lai</au><au>ZHU, Rong</au><au>DONG, Kai</au><au>QIU, Yong-quan</au><au>SUN, Kai-ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF</atitle><jtitle>Journal of iron and steel research, international</jtitle><stitle>J. Iron Steel Res. Int</stitle><addtitle>Journal of Iron and Steel Research</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>18</volume><issue>9</issue><spage>13</spage><epage>20</epage><pages>13-20</pages><issn>1006-706X</issn><eissn>2210-3988</eissn><abstract>A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1006-706X(12)60028-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-706X
ispartof Journal of iron and steel research, international, 2011-09, Vol.18 (9), p.13-20
issn 1006-706X
2210-3988
language eng
recordid cdi_proquest_miscellaneous_1685814503
source Elsevier ScienceDirect Journals; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applied and Technical Physics
Computer simulation
electric arc furnace
Engineering
Flow rate
Fluid dynamics
Iron and steel industry
Iron and steel making
Machines
Manufacturing
Materials Engineering
Materials Science
Mathematical models
Metallic Materials
numerical simulation
Physical Chemistry
Processes
Slags
Steels
three-phase flow
射流穿透深度
建模
撞击
数值模拟
氧气射流
水模型实验
熔池
表面
title Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20an%20Impinging%20Oxygen%20Jet%20on%20Molten%20Bath%20Surface%20in%20150%20t%20EAF&rft.jtitle=Journal%20of%20iron%20and%20steel%20research,%20international&rft.au=HE,%20Chun-lai&rft.date=2011-09-01&rft.volume=18&rft.issue=9&rft.spage=13&rft.epage=20&rft.pages=13-20&rft.issn=1006-706X&rft.eissn=2210-3988&rft_id=info:doi/10.1016/S1006-706X(12)60028-4&rft_dat=%3Cproquest_cross%3E1685814503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019651643&rft_id=info:pmid/&rft_cqvip_id=39330535&rft_els_id=S1006706X12600284&rfr_iscdi=true