Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants

We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multiphase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6 × 106 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-05, Vol.449 (1), p.494-505
Hauptverfasser: Roškar, Rok, Fiacconi, Davide, Mayer, Lucio, Kazantzidis, Stelios, Quinn, Thomas R., Wadsley, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 1
container_start_page 494
container_title Monthly notices of the Royal Astronomical Society
container_volume 449
creator Roškar, Rok
Fiacconi, Davide
Mayer, Lucio
Kazantzidis, Stelios
Quinn, Thomas R.
Wadsley, James
description We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multiphase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6 × 106 M⊙ supermassive black hole (SMBH) embedded in their centres. As the merger completes and the two galactic cores merge, the SMBHs form a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ∼10 Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disc. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ∼108 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.
doi_str_mv 10.1093/mnras/stv312
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685811305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv312</oup_id><sourcerecordid>1676363399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-6d0a34a6c234483da33a92128406a1d45c24e48eae9351ac99571035bb8405e53</originalsourceid><addsrcrecordid>eNqN0TtPwzAUBWALgUQpbPwASwwwEGrHjyQjqnhJSF2ANbpxbqmLnQQ7qdR_T2iZGBDTvcOnIx0dQs45u-GsEDPfBIiz2G8ETw_IhAutkrTQ-pBMGBMqyTPOj8lJjGvGmBSpnpC3RahsD47WaGBL2yWNQ4fBQ4x2g7RyYD7oqnXjaxsIFiO1DTVu8N2W-sH1tltBROoxvGOgAX0DTR9PydESXMSznzslr_d3L_PH5Hnx8DS_fU6M1KpPdM1ASNAmFVLmogYhoEh5mkumgddSmVSizBGwEIqDKQqV8bFJVY1CoRJTcrXP7UL7OWDsS2-jQeegwXaIJde5yjkX7D8000ILURQjvfhF1-0QmrHIqHSWKaV26nqvTGhjDLgsu2A9hG3JWfm9R7nbo9zvMfLLPW-H7m_5Ba_TjFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667755599</pqid></control><display><type>article</type><title>Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants</title><source>Oxford Journals Open Access Collection</source><creator>Roškar, Rok ; Fiacconi, Davide ; Mayer, Lucio ; Kazantzidis, Stelios ; Quinn, Thomas R. ; Wadsley, James</creator><creatorcontrib>Roškar, Rok ; Fiacconi, Davide ; Mayer, Lucio ; Kazantzidis, Stelios ; Quinn, Thomas R. ; Wadsley, James</creatorcontrib><description>We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multiphase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6 × 106 M⊙ supermassive black hole (SMBH) embedded in their centres. As the merger completes and the two galactic cores merge, the SMBHs form a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ∼10 Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disc. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ∼108 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv312</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Black holes ; Black holes (astronomy) ; Clouds ; Cooling ; Decay ; Discs ; Disks ; Double stars ; Fractions ; Milky Way ; Orbitals ; Red shift ; Separation ; Stochasticity ; Supernovae</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-05, Vol.449 (1), p.494-505</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK May 1, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-6d0a34a6c234483da33a92128406a1d45c24e48eae9351ac99571035bb8405e53</citedby><cites>FETCH-LOGICAL-c465t-6d0a34a6c234483da33a92128406a1d45c24e48eae9351ac99571035bb8405e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv312$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Roškar, Rok</creatorcontrib><creatorcontrib>Fiacconi, Davide</creatorcontrib><creatorcontrib>Mayer, Lucio</creatorcontrib><creatorcontrib>Kazantzidis, Stelios</creatorcontrib><creatorcontrib>Quinn, Thomas R.</creatorcontrib><creatorcontrib>Wadsley, James</creatorcontrib><title>Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multiphase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6 × 106 M⊙ supermassive black hole (SMBH) embedded in their centres. As the merger completes and the two galactic cores merge, the SMBHs form a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ∼10 Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disc. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ∼108 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.</description><subject>Astronomy</subject><subject>Black holes</subject><subject>Black holes (astronomy)</subject><subject>Clouds</subject><subject>Cooling</subject><subject>Decay</subject><subject>Discs</subject><subject>Disks</subject><subject>Double stars</subject><subject>Fractions</subject><subject>Milky Way</subject><subject>Orbitals</subject><subject>Red shift</subject><subject>Separation</subject><subject>Stochasticity</subject><subject>Supernovae</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0TtPwzAUBWALgUQpbPwASwwwEGrHjyQjqnhJSF2ANbpxbqmLnQQ7qdR_T2iZGBDTvcOnIx0dQs45u-GsEDPfBIiz2G8ETw_IhAutkrTQ-pBMGBMqyTPOj8lJjGvGmBSpnpC3RahsD47WaGBL2yWNQ4fBQ4x2g7RyYD7oqnXjaxsIFiO1DTVu8N2W-sH1tltBROoxvGOgAX0DTR9PydESXMSznzslr_d3L_PH5Hnx8DS_fU6M1KpPdM1ASNAmFVLmogYhoEh5mkumgddSmVSizBGwEIqDKQqV8bFJVY1CoRJTcrXP7UL7OWDsS2-jQeegwXaIJde5yjkX7D8000ILURQjvfhF1-0QmrHIqHSWKaV26nqvTGhjDLgsu2A9hG3JWfm9R7nbo9zvMfLLPW-H7m_5Ba_TjFY</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Roškar, Rok</creator><creator>Fiacconi, Davide</creator><creator>Mayer, Lucio</creator><creator>Kazantzidis, Stelios</creator><creator>Quinn, Thomas R.</creator><creator>Wadsley, James</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150501</creationdate><title>Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants</title><author>Roškar, Rok ; Fiacconi, Davide ; Mayer, Lucio ; Kazantzidis, Stelios ; Quinn, Thomas R. ; Wadsley, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-6d0a34a6c234483da33a92128406a1d45c24e48eae9351ac99571035bb8405e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Black holes</topic><topic>Black holes (astronomy)</topic><topic>Clouds</topic><topic>Cooling</topic><topic>Decay</topic><topic>Discs</topic><topic>Disks</topic><topic>Double stars</topic><topic>Fractions</topic><topic>Milky Way</topic><topic>Orbitals</topic><topic>Red shift</topic><topic>Separation</topic><topic>Stochasticity</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roškar, Rok</creatorcontrib><creatorcontrib>Fiacconi, Davide</creatorcontrib><creatorcontrib>Mayer, Lucio</creatorcontrib><creatorcontrib>Kazantzidis, Stelios</creatorcontrib><creatorcontrib>Quinn, Thomas R.</creatorcontrib><creatorcontrib>Wadsley, James</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roškar, Rok</au><au>Fiacconi, Davide</au><au>Mayer, Lucio</au><au>Kazantzidis, Stelios</au><au>Quinn, Thomas R.</au><au>Wadsley, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>449</volume><issue>1</issue><spage>494</spage><epage>505</epage><pages>494-505</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multiphase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6 × 106 M⊙ supermassive black hole (SMBH) embedded in their centres. As the merger completes and the two galactic cores merge, the SMBHs form a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ∼10 Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disc. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ∼108 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv312</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-05, Vol.449 (1), p.494-505
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1685811305
source Oxford Journals Open Access Collection
subjects Astronomy
Black holes
Black holes (astronomy)
Clouds
Cooling
Decay
Discs
Disks
Double stars
Fractions
Milky Way
Orbitals
Red shift
Separation
Stochasticity
Supernovae
title Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20decay%20of%20supermassive%20black%20hole%20binaries%20in%20clumpy%20multiphase%20merger%20remnants&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Ro%C5%A1kar,%20Rok&rft.date=2015-05-01&rft.volume=449&rft.issue=1&rft.spage=494&rft.epage=505&rft.pages=494-505&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv312&rft_dat=%3Cproquest_TOX%3E1676363399%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667755599&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv312&rfr_iscdi=true