GRowing Algorithm for Intersection Detection (GRAID) in branching patterns

Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2015-04, Vol.26 (2-3), p.387-400
Hauptverfasser: Núñez, Joan M., Bernal, Jorge, Sánchez, F. Javier, Vilariño, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 2-3
container_start_page 387
container_title Machine vision and applications
container_volume 26
creator Núñez, Joan M.
Bernal, Jorge
Sánchez, F. Javier
Vilariño, Fernando
description Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency (BT) condition and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that, unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performance levels with the advantage that neither training nor parameter tuning is needed.
doi_str_mv 10.1007/s00138-015-0663-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685809928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685809928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-39b7e598333cf3b22d7e6a8f157d475fcdb2f04cb00765b9bc6e52354281c0c83</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNuCl3pYffm_OZZWa6UgFD2H3TTbbmmTmmwRv71ZtiAInt4cfjO8GYRuMTxgAPkYATAtcsA8ByFozs7QADNKciyFOkcDUEkXoMgluopxCwBMSjZAr7Ol_2rcOhvv1j407Waf1T5kc9faEK1pG--yqW1PajRbjufT-6xxWRVKZzad81C2CXbxGl3U5S7am9Mdoo_np_fJS754m80n40VuKFNtTlUlLVcFpdTUtCJkJa0oixpzuWKS12ZVkRqYqVItwStVGWE5oZyRAhswBR2iUZ97CP7zaGOr9000drcrnfXHqLEoeGqqSIfe_UG3_hhc-k4TIohgQLBKFO4pE3yMwdb6EJp9Gb41Bt2tq_t1dVpXd-tqljyk98TEurUNv8n_m34Ayyh6yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262640219</pqid></control><display><type>article</type><title>GRowing Algorithm for Intersection Detection (GRAID) in branching patterns</title><source>SpringerLink Journals - AutoHoldings</source><creator>Núñez, Joan M. ; Bernal, Jorge ; Sánchez, F. Javier ; Vilariño, Fernando</creator><creatorcontrib>Núñez, Joan M. ; Bernal, Jorge ; Sánchez, F. Javier ; Vilariño, Fernando</creatorcontrib><description>Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency (BT) condition and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that, unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performance levels with the advantage that neither training nor parameter tuning is needed.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-015-0663-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biometrics ; Blood vessels ; Colon ; Communications Engineering ; Computer Science ; Datasets ; Ground truth ; Image Processing and Computer Vision ; Intersections ; Landmarks ; Mathematical models ; Medical imaging ; Networks ; Original Paper ; Pattern Recognition ; Proposals ; Tuning ; Vision systems</subject><ispartof>Machine vision and applications, 2015-04, Vol.26 (2-3), p.387-400</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Machine Vision and Applications is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-39b7e598333cf3b22d7e6a8f157d475fcdb2f04cb00765b9bc6e52354281c0c83</citedby><cites>FETCH-LOGICAL-c349t-39b7e598333cf3b22d7e6a8f157d475fcdb2f04cb00765b9bc6e52354281c0c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-015-0663-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-015-0663-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Núñez, Joan M.</creatorcontrib><creatorcontrib>Bernal, Jorge</creatorcontrib><creatorcontrib>Sánchez, F. Javier</creatorcontrib><creatorcontrib>Vilariño, Fernando</creatorcontrib><title>GRowing Algorithm for Intersection Detection (GRAID) in branching patterns</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency (BT) condition and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that, unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performance levels with the advantage that neither training nor parameter tuning is needed.</description><subject>Algorithms</subject><subject>Biometrics</subject><subject>Blood vessels</subject><subject>Colon</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Ground truth</subject><subject>Image Processing and Computer Vision</subject><subject>Intersections</subject><subject>Landmarks</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Proposals</subject><subject>Tuning</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwNuCl3pYffm_OZZWa6UgFD2H3TTbbmmTmmwRv71ZtiAInt4cfjO8GYRuMTxgAPkYATAtcsA8ByFozs7QADNKciyFOkcDUEkXoMgluopxCwBMSjZAr7Ol_2rcOhvv1j407Waf1T5kc9faEK1pG--yqW1PajRbjufT-6xxWRVKZzad81C2CXbxGl3U5S7am9Mdoo_np_fJS754m80n40VuKFNtTlUlLVcFpdTUtCJkJa0oixpzuWKS12ZVkRqYqVItwStVGWE5oZyRAhswBR2iUZ97CP7zaGOr9000drcrnfXHqLEoeGqqSIfe_UG3_hhc-k4TIohgQLBKFO4pE3yMwdb6EJp9Gb41Bt2tq_t1dVpXd-tqljyk98TEurUNv8n_m34Ayyh6yw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Núñez, Joan M.</creator><creator>Bernal, Jorge</creator><creator>Sánchez, F. Javier</creator><creator>Vilariño, Fernando</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>GRowing Algorithm for Intersection Detection (GRAID) in branching patterns</title><author>Núñez, Joan M. ; Bernal, Jorge ; Sánchez, F. Javier ; Vilariño, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-39b7e598333cf3b22d7e6a8f157d475fcdb2f04cb00765b9bc6e52354281c0c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biometrics</topic><topic>Blood vessels</topic><topic>Colon</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Ground truth</topic><topic>Image Processing and Computer Vision</topic><topic>Intersections</topic><topic>Landmarks</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Proposals</topic><topic>Tuning</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Núñez, Joan M.</creatorcontrib><creatorcontrib>Bernal, Jorge</creatorcontrib><creatorcontrib>Sánchez, F. Javier</creatorcontrib><creatorcontrib>Vilariño, Fernando</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Núñez, Joan M.</au><au>Bernal, Jorge</au><au>Sánchez, F. Javier</au><au>Vilariño, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRowing Algorithm for Intersection Detection (GRAID) in branching patterns</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>26</volume><issue>2-3</issue><spage>387</spage><epage>400</epage><pages>387-400</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency (BT) condition and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that, unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performance levels with the advantage that neither training nor parameter tuning is needed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-015-0663-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2015-04, Vol.26 (2-3), p.387-400
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_miscellaneous_1685809928
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Biometrics
Blood vessels
Colon
Communications Engineering
Computer Science
Datasets
Ground truth
Image Processing and Computer Vision
Intersections
Landmarks
Mathematical models
Medical imaging
Networks
Original Paper
Pattern Recognition
Proposals
Tuning
Vision systems
title GRowing Algorithm for Intersection Detection (GRAID) in branching patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRowing%20Algorithm%20for%20Intersection%20Detection%20(GRAID)%20in%20branching%20patterns&rft.jtitle=Machine%20vision%20and%20applications&rft.au=N%C3%BA%C3%B1ez,%20Joan%20M.&rft.date=2015-04-01&rft.volume=26&rft.issue=2-3&rft.spage=387&rft.epage=400&rft.pages=387-400&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-015-0663-4&rft_dat=%3Cproquest_cross%3E1685809928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262640219&rft_id=info:pmid/&rfr_iscdi=true