Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position

In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane alon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2015-02, Vol.26 (2), p.25301-8
Hauptverfasser: Kikuchi, K, Mochizuki, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2
container_start_page 25301
container_title Measurement science & technology
container_volume 26
creator Kikuchi, K
Mochizuki, O
description In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane along the bottom of the flow channel was tilted by tilting the micro-channel, enabling depth scanning in the microscopic field of view. Our system is suitable for measuring 3D two-component flow fields. The depth interval was approximately 220 nm over a depth range of 10 μm, depending on the tilt angle of the micro-channel. Applying the proposed system, we visualized the near-wall flow in a drainage film flow under laminar conditions to the depth of approximately 30 μm via vertical scanning from the bottom to the free surface. The velocity gradient was proportional to the distance from the wall, consistent with theoretical predictions. From the measured near-wall velocity gradient, we calculated the wall shear stress. The measurement accuracy was approximately 1.3 times higher in our proposed method than in the conventional confocal micro-PIV method.
doi_str_mv 10.1088/0957-0233/26/2/025301
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685809596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685809596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-794462bc3b2940d73d7542f1ec3a6a387f85763606a5e67d0d0b7b2d25a60f853</originalsourceid><addsrcrecordid>eNp9kc1u3CAUhVGVSJ38PEIkds3GnQsMYC-rqE0rRcqmyRYxGDKMjHEBJ5rHyBuHqauoi6orQPe753LOReiKwGcCbbuGjssGKGNrKtZ0DZQzIB_QijBBGsGBnKDVO_MRneW8BwAJXbdCr492iMaXA55SdH6wODpcdn7E9RGwG-JLxsHqPCfb4zn78QlrbOLootEDDt6kmE2car9OxZsq4IN-svj5t26wJR1wPuRiA37xZYezD_NQ9GjjXIXr1ePeTrUwxeyLj-MFOnV6yPbyz3mOHr59_Xnzvbm7v_1x8-WuMUxAaWS32Qi6NWxLuw30kvWSb6gj1jAtNGula7kUFRWaWyF76GErt7SnXAuoNXaOrhfdavzXbHNRwWdjh2H5myKi5W2NrRMV5Qt6NJuTdWpK1WU6KALquAJ1jFcd41VUKKqWFdS-T0ufj5PaxzmN1ZAKddRflJp6V0nyD_L_6m9aFpjH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685809596</pqid></control><display><type>article</type><title>Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kikuchi, K ; Mochizuki, O</creator><creatorcontrib>Kikuchi, K ; Mochizuki, O</creatorcontrib><description>In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane along the bottom of the flow channel was tilted by tilting the micro-channel, enabling depth scanning in the microscopic field of view. Our system is suitable for measuring 3D two-component flow fields. The depth interval was approximately 220 nm over a depth range of 10 μm, depending on the tilt angle of the micro-channel. Applying the proposed system, we visualized the near-wall flow in a drainage film flow under laminar conditions to the depth of approximately 30 μm via vertical scanning from the bottom to the free surface. The velocity gradient was proportional to the distance from the wall, consistent with theoretical predictions. From the measured near-wall velocity gradient, we calculated the wall shear stress. The measurement accuracy was approximately 1.3 times higher in our proposed method than in the conventional confocal micro-PIV method.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/26/2/025301</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Confocal ; confocal micro-PIV ; Focal plane ; Intervals ; Microscopy ; near wall flow ; Particle image velocimetry ; Scanning ; Thin films ; Three dimensional ; tilted microscopic observation ; wall shear stress ; Walls</subject><ispartof>Measurement science &amp; technology, 2015-02, Vol.26 (2), p.25301-8</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-794462bc3b2940d73d7542f1ec3a6a387f85763606a5e67d0d0b7b2d25a60f853</citedby><cites>FETCH-LOGICAL-c360t-794462bc3b2940d73d7542f1ec3a6a387f85763606a5e67d0d0b7b2d25a60f853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/26/2/025301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Kikuchi, K</creatorcontrib><creatorcontrib>Mochizuki, O</creatorcontrib><title>Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position</title><title>Measurement science &amp; technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane along the bottom of the flow channel was tilted by tilting the micro-channel, enabling depth scanning in the microscopic field of view. Our system is suitable for measuring 3D two-component flow fields. The depth interval was approximately 220 nm over a depth range of 10 μm, depending on the tilt angle of the micro-channel. Applying the proposed system, we visualized the near-wall flow in a drainage film flow under laminar conditions to the depth of approximately 30 μm via vertical scanning from the bottom to the free surface. The velocity gradient was proportional to the distance from the wall, consistent with theoretical predictions. From the measured near-wall velocity gradient, we calculated the wall shear stress. The measurement accuracy was approximately 1.3 times higher in our proposed method than in the conventional confocal micro-PIV method.</description><subject>Confocal</subject><subject>confocal micro-PIV</subject><subject>Focal plane</subject><subject>Intervals</subject><subject>Microscopy</subject><subject>near wall flow</subject><subject>Particle image velocimetry</subject><subject>Scanning</subject><subject>Thin films</subject><subject>Three dimensional</subject><subject>tilted microscopic observation</subject><subject>wall shear stress</subject><subject>Walls</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAUhVGVSJ38PEIkds3GnQsMYC-rqE0rRcqmyRYxGDKMjHEBJ5rHyBuHqauoi6orQPe753LOReiKwGcCbbuGjssGKGNrKtZ0DZQzIB_QijBBGsGBnKDVO_MRneW8BwAJXbdCr492iMaXA55SdH6wODpcdn7E9RGwG-JLxsHqPCfb4zn78QlrbOLootEDDt6kmE2car9OxZsq4IN-svj5t26wJR1wPuRiA37xZYezD_NQ9GjjXIXr1ePeTrUwxeyLj-MFOnV6yPbyz3mOHr59_Xnzvbm7v_1x8-WuMUxAaWS32Qi6NWxLuw30kvWSb6gj1jAtNGula7kUFRWaWyF76GErt7SnXAuoNXaOrhfdavzXbHNRwWdjh2H5myKi5W2NrRMV5Qt6NJuTdWpK1WU6KALquAJ1jFcd41VUKKqWFdS-T0ufj5PaxzmN1ZAKddRflJp6V0nyD_L_6m9aFpjH</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Kikuchi, K</creator><creator>Mochizuki, O</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150201</creationdate><title>Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position</title><author>Kikuchi, K ; Mochizuki, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-794462bc3b2940d73d7542f1ec3a6a387f85763606a5e67d0d0b7b2d25a60f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Confocal</topic><topic>confocal micro-PIV</topic><topic>Focal plane</topic><topic>Intervals</topic><topic>Microscopy</topic><topic>near wall flow</topic><topic>Particle image velocimetry</topic><topic>Scanning</topic><topic>Thin films</topic><topic>Three dimensional</topic><topic>tilted microscopic observation</topic><topic>wall shear stress</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kikuchi, K</creatorcontrib><creatorcontrib>Mochizuki, O</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kikuchi, K</au><au>Mochizuki, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position</atitle><jtitle>Measurement science &amp; technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>26</volume><issue>2</issue><spage>25301</spage><epage>8</epage><pages>25301-8</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane along the bottom of the flow channel was tilted by tilting the micro-channel, enabling depth scanning in the microscopic field of view. Our system is suitable for measuring 3D two-component flow fields. The depth interval was approximately 220 nm over a depth range of 10 μm, depending on the tilt angle of the micro-channel. Applying the proposed system, we visualized the near-wall flow in a drainage film flow under laminar conditions to the depth of approximately 30 μm via vertical scanning from the bottom to the free surface. The velocity gradient was proportional to the distance from the wall, consistent with theoretical predictions. From the measured near-wall velocity gradient, we calculated the wall shear stress. The measurement accuracy was approximately 1.3 times higher in our proposed method than in the conventional confocal micro-PIV method.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/26/2/025301</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2015-02, Vol.26 (2), p.25301-8
issn 0957-0233
1361-6501
language eng
recordid cdi_proquest_miscellaneous_1685809596
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Confocal
confocal micro-PIV
Focal plane
Intervals
Microscopy
near wall flow
Particle image velocimetry
Scanning
Thin films
Three dimensional
tilted microscopic observation
wall shear stress
Walls
title Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20profile%20of%20thin%20film%20flows%20measured%20using%20a%20confocal%20microscopy%20particle%20image%20velocimetry%20system%20with%20simultaneous%20multi%20depth%20position&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Kikuchi,%20K&rft.date=2015-02-01&rft.volume=26&rft.issue=2&rft.spage=25301&rft.epage=8&rft.pages=25301-8&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/0957-0233/26/2/025301&rft_dat=%3Cproquest_iop_j%3E1685809596%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685809596&rft_id=info:pmid/&rfr_iscdi=true