Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices
Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve thei...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2015-03, Vol.83, p.208-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | |
container_start_page | 208 |
container_title | Carbon (New York) |
container_volume | 83 |
creator | Mu, Xin Zhang, Teng Go, David B. Luo, Tengfei |
description | Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors. |
doi_str_mv | 10.1016/j.carbon.2014.11.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685809039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314011002</els_id><sourcerecordid>1685809039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEWWbma8mWdmI0jxBQU3uo6Z5I5NmUnGJBX6702pbl1dDpzvcO4h5JpBzoA1t9tcSd87mxfAqpyxHAp-QhaMt2VW8o6dkgUA8KwpivKcXISwTbLirFqQj5XboEcbqbSaGqv-5Lxx1lkak5zkSKOXNszOx-ShJrjoZqPkOO7p5LQZDGr66eW8QYs07Gb0o4zRKAyX5GyQY8Cr37sk748Pb6vnbP369LK6X2eqgjpmTDXQcN1gql6A7lVRFT3vAeuhrWupurKHumw1a5GD5BVrUv2qxKbv61ZCVy7JzTF39u5rhyGKyQSF4ygtul0QCag5dFAerNXRqrwLweMgZm8m6feCgTgMKrbiOKg4DCoYE6lVwu6OGKY3vg16EZRBq1AbjyoK7cz_AT_eDYIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685809039</pqid></control><display><type>article</type><title>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mu, Xin ; Zhang, Teng ; Go, David B. ; Luo, Tengfei</creator><creatorcontrib>Mu, Xin ; Zhang, Teng ; Go, David B. ; Luo, Tengfei</creatorcontrib><description>Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.11.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coherence ; Graphene ; Heat transfer ; Phonons ; Superlattices ; Thermal conductivity ; Thermoelectricity ; Transport</subject><ispartof>Carbon (New York), 2015-03, Vol.83, p.208-216</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</citedby><cites>FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2014.11.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Go, David B.</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><title>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</title><title>Carbon (New York)</title><description>Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.</description><subject>Coherence</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Phonons</subject><subject>Superlattices</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEWWbma8mWdmI0jxBQU3uo6Z5I5NmUnGJBX6702pbl1dDpzvcO4h5JpBzoA1t9tcSd87mxfAqpyxHAp-QhaMt2VW8o6dkgUA8KwpivKcXISwTbLirFqQj5XboEcbqbSaGqv-5Lxx1lkak5zkSKOXNszOx-ShJrjoZqPkOO7p5LQZDGr66eW8QYs07Gb0o4zRKAyX5GyQY8Cr37sk748Pb6vnbP369LK6X2eqgjpmTDXQcN1gql6A7lVRFT3vAeuhrWupurKHumw1a5GD5BVrUv2qxKbv61ZCVy7JzTF39u5rhyGKyQSF4ygtul0QCag5dFAerNXRqrwLweMgZm8m6feCgTgMKrbiOKg4DCoYE6lVwu6OGKY3vg16EZRBq1AbjyoK7cz_AT_eDYIj</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Mu, Xin</creator><creator>Zhang, Teng</creator><creator>Go, David B.</creator><creator>Luo, Tengfei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</title><author>Mu, Xin ; Zhang, Teng ; Go, David B. ; Luo, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coherence</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Phonons</topic><topic>Superlattices</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Go, David B.</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Xin</au><au>Zhang, Teng</au><au>Go, David B.</au><au>Luo, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</atitle><jtitle>Carbon (New York)</jtitle><date>2015-03</date><risdate>2015</risdate><volume>83</volume><spage>208</spage><epage>216</epage><pages>208-216</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.11.028</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2015-03, Vol.83, p.208-216 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685809039 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Coherence Graphene Heat transfer Phonons Superlattices Thermal conductivity Thermoelectricity Transport |
title | Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20and%20incoherent%20phonon%20thermal%20transport%20in%20isotopically%20modified%20graphene%20superlattices&rft.jtitle=Carbon%20(New%20York)&rft.au=Mu,%20Xin&rft.date=2015-03&rft.volume=83&rft.spage=208&rft.epage=216&rft.pages=208-216&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2014.11.028&rft_dat=%3Cproquest_cross%3E1685809039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685809039&rft_id=info:pmid/&rft_els_id=S0008622314011002&rfr_iscdi=true |