Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices

Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2015-03, Vol.83, p.208-216
Hauptverfasser: Mu, Xin, Zhang, Teng, Go, David B., Luo, Tengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 208
container_title Carbon (New York)
container_volume 83
creator Mu, Xin
Zhang, Teng
Go, David B.
Luo, Tengfei
description Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.
doi_str_mv 10.1016/j.carbon.2014.11.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685809039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314011002</els_id><sourcerecordid>1685809039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEWWbma8mWdmI0jxBQU3uo6Z5I5NmUnGJBX6702pbl1dDpzvcO4h5JpBzoA1t9tcSd87mxfAqpyxHAp-QhaMt2VW8o6dkgUA8KwpivKcXISwTbLirFqQj5XboEcbqbSaGqv-5Lxx1lkak5zkSKOXNszOx-ShJrjoZqPkOO7p5LQZDGr66eW8QYs07Gb0o4zRKAyX5GyQY8Cr37sk748Pb6vnbP369LK6X2eqgjpmTDXQcN1gql6A7lVRFT3vAeuhrWupurKHumw1a5GD5BVrUv2qxKbv61ZCVy7JzTF39u5rhyGKyQSF4ygtul0QCag5dFAerNXRqrwLweMgZm8m6feCgTgMKrbiOKg4DCoYE6lVwu6OGKY3vg16EZRBq1AbjyoK7cz_AT_eDYIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685809039</pqid></control><display><type>article</type><title>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mu, Xin ; Zhang, Teng ; Go, David B. ; Luo, Tengfei</creator><creatorcontrib>Mu, Xin ; Zhang, Teng ; Go, David B. ; Luo, Tengfei</creatorcontrib><description>Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.11.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coherence ; Graphene ; Heat transfer ; Phonons ; Superlattices ; Thermal conductivity ; Thermoelectricity ; Transport</subject><ispartof>Carbon (New York), 2015-03, Vol.83, p.208-216</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</citedby><cites>FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2014.11.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Go, David B.</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><title>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</title><title>Carbon (New York)</title><description>Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.</description><subject>Coherence</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Phonons</subject><subject>Superlattices</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEWWbma8mWdmI0jxBQU3uo6Z5I5NmUnGJBX6702pbl1dDpzvcO4h5JpBzoA1t9tcSd87mxfAqpyxHAp-QhaMt2VW8o6dkgUA8KwpivKcXISwTbLirFqQj5XboEcbqbSaGqv-5Lxx1lkak5zkSKOXNszOx-ShJrjoZqPkOO7p5LQZDGr66eW8QYs07Gb0o4zRKAyX5GyQY8Cr37sk748Pb6vnbP369LK6X2eqgjpmTDXQcN1gql6A7lVRFT3vAeuhrWupurKHumw1a5GD5BVrUv2qxKbv61ZCVy7JzTF39u5rhyGKyQSF4ygtul0QCag5dFAerNXRqrwLweMgZm8m6feCgTgMKrbiOKg4DCoYE6lVwu6OGKY3vg16EZRBq1AbjyoK7cz_AT_eDYIj</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Mu, Xin</creator><creator>Zhang, Teng</creator><creator>Go, David B.</creator><creator>Luo, Tengfei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</title><author>Mu, Xin ; Zhang, Teng ; Go, David B. ; Luo, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-1c6068d6e02820dbc242b8b0e5f755ac93b0537d17e80a841681443e6bb57a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coherence</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Phonons</topic><topic>Superlattices</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Go, David B.</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Xin</au><au>Zhang, Teng</au><au>Go, David B.</au><au>Luo, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices</atitle><jtitle>Carbon (New York)</jtitle><date>2015-03</date><risdate>2015</risdate><volume>83</volume><spage>208</spage><epage>216</epage><pages>208-216</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Understanding the nature of phonon transport is of both fundamental and technological importance. In this paper, we demonstrate unambiguous coherent and incoherent phonon transport in 12C/13C graphene superlattices using large-scale molecular dynamics simulations. Coherent phonon modes preserve their phases as they propagate through multiple interfaces. For these phonons, the superlattice can be treated as a homogeneous material with its own unit cell and phonon dispersion. We observe length-dependent thermal conductivity of the 12C/13C graphene superlattices, which indicates the existence of coherent phonons that transport ballistically over large distances. By changing the period length of the superlattices and thus the interface density, we observe a minimum in thermal conductivity, which implies the crossover from incoherent to coherent phonon transport. The thermal conductivity of the superlattices can be further decreased as we disrupt the coherence of phonons by manipulating and randomizing the superlattice structure. Our results show that graphene – a two-dimensional material with intrinsically weak anharmonic phonon scattering – is an ideal platform for studying the nature of phonons. The ability of manipulating thermal conductivity using superlattice-based two-dimensional materials can also potentially open up opportunities for thermoelectric applications given existing reports on their high thermoelectric power factors.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.11.028</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2015-03, Vol.83, p.208-216
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1685809039
source ScienceDirect Journals (5 years ago - present)
subjects Coherence
Graphene
Heat transfer
Phonons
Superlattices
Thermal conductivity
Thermoelectricity
Transport
title Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20and%20incoherent%20phonon%20thermal%20transport%20in%20isotopically%20modified%20graphene%20superlattices&rft.jtitle=Carbon%20(New%20York)&rft.au=Mu,%20Xin&rft.date=2015-03&rft.volume=83&rft.spage=208&rft.epage=216&rft.pages=208-216&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2014.11.028&rft_dat=%3Cproquest_cross%3E1685809039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685809039&rft_id=info:pmid/&rft_els_id=S0008622314011002&rfr_iscdi=true