Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study
Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explain...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2013-04, Vol.107 (2), p.201-216 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Biological cybernetics |
container_volume | 107 |
creator | Aoi, Shinya Kondo, Takahiro Hayashi, Naohiro Yanagihara, Dai Aoki, Sho Yamaura, Hiroshi Ogihara, Naomichi Funato, Tetsuro Tomita, Nozomi Senda, Kei Tsuchiya, Kazuo |
description | Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion. |
doi_str_mv | 10.1007/s00422-013-0546-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685807691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349451483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</originalsourceid><addsrcrecordid>eNqNktuK1TAUhoMoznb0AbyRgAhzU105NG29k42jwoA3el3SZNWdoU22STowb-Ojmk63BwRhchNIvvXlsH5CnjN4zQCaNwlAcl4BExXUUlXqAdkxKcpK08BDsgMhoWIc4Iw8SekaADped4_JGRdSAG_aHfmxDz5HNyzZBZ9oGOnxoBPSiAlzdv4b1d5S5zPGyc0DNSFE67xecZoDzQek2upjdjdYNosrTKvl4Ly9KwhDytpMhboJzmpvkNolruIpmDCHO5HzNOqc3lJNk5uXadOnvNjbp-TRqKeEz07zOfl6-f7L_mN19fnDp_27q8ooznI1Dhy6dpSDVLbmgKId9DgigOisbMyo66Yrn6UUGIYDilog1pazBk0rjWLinFxs3mMM3xdMuZ9dMjhN2mNYUs9UW7fQqO4eqJCdrJlsxT1QzkQZsFpf_oNehyX68uaVKn1jrKkLxTbKxJBSxLE_RjfreNsz6NdQ9Fso-mLs11D0qtS8OJmXYUb7u-JXCgrw6gToZPQ0xtIml_5wjeKi5uvhfOPSce0gxr-u-N_TfwITxdC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322591175</pqid></control><display><type>article</type><title>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Aoi, Shinya ; Kondo, Takahiro ; Hayashi, Naohiro ; Yanagihara, Dai ; Aoki, Sho ; Yamaura, Hiroshi ; Ogihara, Naomichi ; Funato, Tetsuro ; Tomita, Nozomi ; Senda, Kei ; Tsuchiya, Kazuo</creator><creatorcontrib>Aoi, Shinya ; Kondo, Takahiro ; Hayashi, Naohiro ; Yanagihara, Dai ; Aoki, Sho ; Yamaura, Hiroshi ; Ogihara, Naomichi ; Funato, Tetsuro ; Tomita, Nozomi ; Senda, Kei ; Tsuchiya, Kazuo</creatorcontrib><description>Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-013-0546-6</identifier><identifier>PMID: 23430278</identifier><identifier>CODEN: BICYAF</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Adaptation, Physiological ; Adaptative systems ; Animals ; Applied sciences ; Bioinformatics ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics ; Biomedical and Life Sciences ; Biomedicine ; Complex Systems ; Computer Appl. in Life Sciences ; Computer science; control theory; systems ; Computer Simulation ; Construction ; Control ; Control theory. Systems ; Cybernetics ; Electromyography ; Escape Reaction - physiology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Generators ; Hindlimb - innervation ; Hindlimb - physiology ; Locomotion ; Locomotion - physiology ; Male ; Models, Biological ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Muscle, Skeletal - innervation ; Muscles ; Musculoskeletal Physiological Phenomena ; Musculoskeletal system ; Neurobiology ; Neurosciences ; Obstacle avoidance ; Obstacles ; Original Paper ; Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ ; Physiology ; Psychomotor Performance - physiology ; Rats ; Rats, Wistar ; Robotics ; Rodents ; Simulation ; Vertebrates: nervous system and sense organs</subject><ispartof>Biological cybernetics, 2013-04, Vol.107 (2), p.201-216</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</citedby><cites>FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-013-0546-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-013-0546-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27623525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23430278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aoi, Shinya</creatorcontrib><creatorcontrib>Kondo, Takahiro</creatorcontrib><creatorcontrib>Hayashi, Naohiro</creatorcontrib><creatorcontrib>Yanagihara, Dai</creatorcontrib><creatorcontrib>Aoki, Sho</creatorcontrib><creatorcontrib>Yamaura, Hiroshi</creatorcontrib><creatorcontrib>Ogihara, Naomichi</creatorcontrib><creatorcontrib>Funato, Tetsuro</creatorcontrib><creatorcontrib>Tomita, Nozomi</creatorcontrib><creatorcontrib>Senda, Kei</creatorcontrib><creatorcontrib>Tsuchiya, Kazuo</creatorcontrib><title>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.</description><subject>Adaptation, Physiological</subject><subject>Adaptative systems</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Control</subject><subject>Control theory. Systems</subject><subject>Cybernetics</subject><subject>Electromyography</subject><subject>Escape Reaction - physiology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generators</subject><subject>Hindlimb - innervation</subject><subject>Hindlimb - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscles</subject><subject>Musculoskeletal Physiological Phenomena</subject><subject>Musculoskeletal system</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Obstacle avoidance</subject><subject>Obstacles</subject><subject>Original Paper</subject><subject>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</subject><subject>Physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Robotics</subject><subject>Rodents</subject><subject>Simulation</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNktuK1TAUhoMoznb0AbyRgAhzU105NG29k42jwoA3el3SZNWdoU22STowb-Ojmk63BwRhchNIvvXlsH5CnjN4zQCaNwlAcl4BExXUUlXqAdkxKcpK08BDsgMhoWIc4Iw8SekaADped4_JGRdSAG_aHfmxDz5HNyzZBZ9oGOnxoBPSiAlzdv4b1d5S5zPGyc0DNSFE67xecZoDzQek2upjdjdYNosrTKvl4Ly9KwhDytpMhboJzmpvkNolruIpmDCHO5HzNOqc3lJNk5uXadOnvNjbp-TRqKeEz07zOfl6-f7L_mN19fnDp_27q8ooznI1Dhy6dpSDVLbmgKId9DgigOisbMyo66Yrn6UUGIYDilog1pazBk0rjWLinFxs3mMM3xdMuZ9dMjhN2mNYUs9UW7fQqO4eqJCdrJlsxT1QzkQZsFpf_oNehyX68uaVKn1jrKkLxTbKxJBSxLE_RjfreNsz6NdQ9Fso-mLs11D0qtS8OJmXYUb7u-JXCgrw6gToZPQ0xtIml_5wjeKi5uvhfOPSce0gxr-u-N_TfwITxdC4</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Aoi, Shinya</creator><creator>Kondo, Takahiro</creator><creator>Hayashi, Naohiro</creator><creator>Yanagihara, Dai</creator><creator>Aoki, Sho</creator><creator>Yamaura, Hiroshi</creator><creator>Ogihara, Naomichi</creator><creator>Funato, Tetsuro</creator><creator>Tomita, Nozomi</creator><creator>Senda, Kei</creator><creator>Tsuchiya, Kazuo</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</title><author>Aoi, Shinya ; Kondo, Takahiro ; Hayashi, Naohiro ; Yanagihara, Dai ; Aoki, Sho ; Yamaura, Hiroshi ; Ogihara, Naomichi ; Funato, Tetsuro ; Tomita, Nozomi ; Senda, Kei ; Tsuchiya, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Adaptative systems</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Control</topic><topic>Control theory. Systems</topic><topic>Cybernetics</topic><topic>Electromyography</topic><topic>Escape Reaction - physiology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generators</topic><topic>Hindlimb - innervation</topic><topic>Hindlimb - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscles</topic><topic>Musculoskeletal Physiological Phenomena</topic><topic>Musculoskeletal system</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Obstacle avoidance</topic><topic>Obstacles</topic><topic>Original Paper</topic><topic>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</topic><topic>Physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Robotics</topic><topic>Rodents</topic><topic>Simulation</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoi, Shinya</creatorcontrib><creatorcontrib>Kondo, Takahiro</creatorcontrib><creatorcontrib>Hayashi, Naohiro</creatorcontrib><creatorcontrib>Yanagihara, Dai</creatorcontrib><creatorcontrib>Aoki, Sho</creatorcontrib><creatorcontrib>Yamaura, Hiroshi</creatorcontrib><creatorcontrib>Ogihara, Naomichi</creatorcontrib><creatorcontrib>Funato, Tetsuro</creatorcontrib><creatorcontrib>Tomita, Nozomi</creatorcontrib><creatorcontrib>Senda, Kei</creatorcontrib><creatorcontrib>Tsuchiya, Kazuo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoi, Shinya</au><au>Kondo, Takahiro</au><au>Hayashi, Naohiro</au><au>Yanagihara, Dai</au><au>Aoki, Sho</au><au>Yamaura, Hiroshi</au><au>Ogihara, Naomichi</au><au>Funato, Tetsuro</au><au>Tomita, Nozomi</au><au>Senda, Kei</au><au>Tsuchiya, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>107</volume><issue>2</issue><spage>201</spage><epage>216</epage><pages>201-216</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><coden>BICYAF</coden><abstract>Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23430278</pmid><doi>10.1007/s00422-013-0546-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2013-04, Vol.107 (2), p.201-216 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685807691 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adaptation, Physiological Adaptative systems Animals Applied sciences Bioinformatics Biological and medical sciences Biomechanical Phenomena Biomechanics Biomedical and Life Sciences Biomedicine Complex Systems Computer Appl. in Life Sciences Computer science control theory systems Computer Simulation Construction Control Control theory. Systems Cybernetics Electromyography Escape Reaction - physiology Exact sciences and technology Fundamental and applied biological sciences. Psychology Generators Hindlimb - innervation Hindlimb - physiology Locomotion Locomotion - physiology Male Models, Biological Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Muscle, Skeletal - innervation Muscles Musculoskeletal Physiological Phenomena Musculoskeletal system Neurobiology Neurosciences Obstacle avoidance Obstacles Original Paper Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ Physiology Psychomotor Performance - physiology Rats Rats, Wistar Robotics Rodents Simulation Vertebrates: nervous system and sense organs |
title | Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20of%20phase%20resetting%20and%20interlimb%20coordination%20to%20the%20adaptive%20control%20of%20hindlimb%20obstacle%20avoidance%20during%20locomotion%20in%20rats:%20a%20simulation%20study&rft.jtitle=Biological%20cybernetics&rft.au=Aoi,%20Shinya&rft.date=2013-04-01&rft.volume=107&rft.issue=2&rft.spage=201&rft.epage=216&rft.pages=201-216&rft.issn=0340-1200&rft.eissn=1432-0770&rft.coden=BICYAF&rft_id=info:doi/10.1007/s00422-013-0546-6&rft_dat=%3Cproquest_cross%3E1349451483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322591175&rft_id=info:pmid/23430278&rfr_iscdi=true |