Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study

Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2013-04, Vol.107 (2), p.201-216
Hauptverfasser: Aoi, Shinya, Kondo, Takahiro, Hayashi, Naohiro, Yanagihara, Dai, Aoki, Sho, Yamaura, Hiroshi, Ogihara, Naomichi, Funato, Tetsuro, Tomita, Nozomi, Senda, Kei, Tsuchiya, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 2
container_start_page 201
container_title Biological cybernetics
container_volume 107
creator Aoi, Shinya
Kondo, Takahiro
Hayashi, Naohiro
Yanagihara, Dai
Aoki, Sho
Yamaura, Hiroshi
Ogihara, Naomichi
Funato, Tetsuro
Tomita, Nozomi
Senda, Kei
Tsuchiya, Kazuo
description Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.
doi_str_mv 10.1007/s00422-013-0546-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685807691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349451483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</originalsourceid><addsrcrecordid>eNqNktuK1TAUhoMoznb0AbyRgAhzU105NG29k42jwoA3el3SZNWdoU22STowb-Ojmk63BwRhchNIvvXlsH5CnjN4zQCaNwlAcl4BExXUUlXqAdkxKcpK08BDsgMhoWIc4Iw8SekaADped4_JGRdSAG_aHfmxDz5HNyzZBZ9oGOnxoBPSiAlzdv4b1d5S5zPGyc0DNSFE67xecZoDzQek2upjdjdYNosrTKvl4Ly9KwhDytpMhboJzmpvkNolruIpmDCHO5HzNOqc3lJNk5uXadOnvNjbp-TRqKeEz07zOfl6-f7L_mN19fnDp_27q8ooznI1Dhy6dpSDVLbmgKId9DgigOisbMyo66Yrn6UUGIYDilog1pazBk0rjWLinFxs3mMM3xdMuZ9dMjhN2mNYUs9UW7fQqO4eqJCdrJlsxT1QzkQZsFpf_oNehyX68uaVKn1jrKkLxTbKxJBSxLE_RjfreNsz6NdQ9Fso-mLs11D0qtS8OJmXYUb7u-JXCgrw6gToZPQ0xtIml_5wjeKi5uvhfOPSce0gxr-u-N_TfwITxdC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322591175</pqid></control><display><type>article</type><title>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Aoi, Shinya ; Kondo, Takahiro ; Hayashi, Naohiro ; Yanagihara, Dai ; Aoki, Sho ; Yamaura, Hiroshi ; Ogihara, Naomichi ; Funato, Tetsuro ; Tomita, Nozomi ; Senda, Kei ; Tsuchiya, Kazuo</creator><creatorcontrib>Aoi, Shinya ; Kondo, Takahiro ; Hayashi, Naohiro ; Yanagihara, Dai ; Aoki, Sho ; Yamaura, Hiroshi ; Ogihara, Naomichi ; Funato, Tetsuro ; Tomita, Nozomi ; Senda, Kei ; Tsuchiya, Kazuo</creatorcontrib><description>Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-013-0546-6</identifier><identifier>PMID: 23430278</identifier><identifier>CODEN: BICYAF</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Adaptation, Physiological ; Adaptative systems ; Animals ; Applied sciences ; Bioinformatics ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics ; Biomedical and Life Sciences ; Biomedicine ; Complex Systems ; Computer Appl. in Life Sciences ; Computer science; control theory; systems ; Computer Simulation ; Construction ; Control ; Control theory. Systems ; Cybernetics ; Electromyography ; Escape Reaction - physiology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Generators ; Hindlimb - innervation ; Hindlimb - physiology ; Locomotion ; Locomotion - physiology ; Male ; Models, Biological ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Muscle, Skeletal - innervation ; Muscles ; Musculoskeletal Physiological Phenomena ; Musculoskeletal system ; Neurobiology ; Neurosciences ; Obstacle avoidance ; Obstacles ; Original Paper ; Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ ; Physiology ; Psychomotor Performance - physiology ; Rats ; Rats, Wistar ; Robotics ; Rodents ; Simulation ; Vertebrates: nervous system and sense organs</subject><ispartof>Biological cybernetics, 2013-04, Vol.107 (2), p.201-216</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</citedby><cites>FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-013-0546-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-013-0546-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27623525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23430278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aoi, Shinya</creatorcontrib><creatorcontrib>Kondo, Takahiro</creatorcontrib><creatorcontrib>Hayashi, Naohiro</creatorcontrib><creatorcontrib>Yanagihara, Dai</creatorcontrib><creatorcontrib>Aoki, Sho</creatorcontrib><creatorcontrib>Yamaura, Hiroshi</creatorcontrib><creatorcontrib>Ogihara, Naomichi</creatorcontrib><creatorcontrib>Funato, Tetsuro</creatorcontrib><creatorcontrib>Tomita, Nozomi</creatorcontrib><creatorcontrib>Senda, Kei</creatorcontrib><creatorcontrib>Tsuchiya, Kazuo</creatorcontrib><title>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.</description><subject>Adaptation, Physiological</subject><subject>Adaptative systems</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Control</subject><subject>Control theory. Systems</subject><subject>Cybernetics</subject><subject>Electromyography</subject><subject>Escape Reaction - physiology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generators</subject><subject>Hindlimb - innervation</subject><subject>Hindlimb - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscles</subject><subject>Musculoskeletal Physiological Phenomena</subject><subject>Musculoskeletal system</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Obstacle avoidance</subject><subject>Obstacles</subject><subject>Original Paper</subject><subject>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</subject><subject>Physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Robotics</subject><subject>Rodents</subject><subject>Simulation</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNktuK1TAUhoMoznb0AbyRgAhzU105NG29k42jwoA3el3SZNWdoU22STowb-Ojmk63BwRhchNIvvXlsH5CnjN4zQCaNwlAcl4BExXUUlXqAdkxKcpK08BDsgMhoWIc4Iw8SekaADped4_JGRdSAG_aHfmxDz5HNyzZBZ9oGOnxoBPSiAlzdv4b1d5S5zPGyc0DNSFE67xecZoDzQek2upjdjdYNosrTKvl4Ly9KwhDytpMhboJzmpvkNolruIpmDCHO5HzNOqc3lJNk5uXadOnvNjbp-TRqKeEz07zOfl6-f7L_mN19fnDp_27q8ooznI1Dhy6dpSDVLbmgKId9DgigOisbMyo66Yrn6UUGIYDilog1pazBk0rjWLinFxs3mMM3xdMuZ9dMjhN2mNYUs9UW7fQqO4eqJCdrJlsxT1QzkQZsFpf_oNehyX68uaVKn1jrKkLxTbKxJBSxLE_RjfreNsz6NdQ9Fso-mLs11D0qtS8OJmXYUb7u-JXCgrw6gToZPQ0xtIml_5wjeKi5uvhfOPSce0gxr-u-N_TfwITxdC4</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Aoi, Shinya</creator><creator>Kondo, Takahiro</creator><creator>Hayashi, Naohiro</creator><creator>Yanagihara, Dai</creator><creator>Aoki, Sho</creator><creator>Yamaura, Hiroshi</creator><creator>Ogihara, Naomichi</creator><creator>Funato, Tetsuro</creator><creator>Tomita, Nozomi</creator><creator>Senda, Kei</creator><creator>Tsuchiya, Kazuo</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</title><author>Aoi, Shinya ; Kondo, Takahiro ; Hayashi, Naohiro ; Yanagihara, Dai ; Aoki, Sho ; Yamaura, Hiroshi ; Ogihara, Naomichi ; Funato, Tetsuro ; Tomita, Nozomi ; Senda, Kei ; Tsuchiya, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-fb2098f4b46d520e38baffe0039d47cfa579042660c1ebe353ee5d217ec84c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Adaptative systems</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Control</topic><topic>Control theory. Systems</topic><topic>Cybernetics</topic><topic>Electromyography</topic><topic>Escape Reaction - physiology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generators</topic><topic>Hindlimb - innervation</topic><topic>Hindlimb - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscles</topic><topic>Musculoskeletal Physiological Phenomena</topic><topic>Musculoskeletal system</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Obstacle avoidance</topic><topic>Obstacles</topic><topic>Original Paper</topic><topic>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</topic><topic>Physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Robotics</topic><topic>Rodents</topic><topic>Simulation</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoi, Shinya</creatorcontrib><creatorcontrib>Kondo, Takahiro</creatorcontrib><creatorcontrib>Hayashi, Naohiro</creatorcontrib><creatorcontrib>Yanagihara, Dai</creatorcontrib><creatorcontrib>Aoki, Sho</creatorcontrib><creatorcontrib>Yamaura, Hiroshi</creatorcontrib><creatorcontrib>Ogihara, Naomichi</creatorcontrib><creatorcontrib>Funato, Tetsuro</creatorcontrib><creatorcontrib>Tomita, Nozomi</creatorcontrib><creatorcontrib>Senda, Kei</creatorcontrib><creatorcontrib>Tsuchiya, Kazuo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoi, Shinya</au><au>Kondo, Takahiro</au><au>Hayashi, Naohiro</au><au>Yanagihara, Dai</au><au>Aoki, Sho</au><au>Yamaura, Hiroshi</au><au>Ogihara, Naomichi</au><au>Funato, Tetsuro</au><au>Tomita, Nozomi</au><au>Senda, Kei</au><au>Tsuchiya, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>107</volume><issue>2</issue><spage>201</spage><epage>216</epage><pages>201-216</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><coden>BICYAF</coden><abstract>Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23430278</pmid><doi>10.1007/s00422-013-0546-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 2013-04, Vol.107 (2), p.201-216
issn 0340-1200
1432-0770
language eng
recordid cdi_proquest_miscellaneous_1685807691
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adaptation, Physiological
Adaptative systems
Animals
Applied sciences
Bioinformatics
Biological and medical sciences
Biomechanical Phenomena
Biomechanics
Biomedical and Life Sciences
Biomedicine
Complex Systems
Computer Appl. in Life Sciences
Computer science
control theory
systems
Computer Simulation
Construction
Control
Control theory. Systems
Cybernetics
Electromyography
Escape Reaction - physiology
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Generators
Hindlimb - innervation
Hindlimb - physiology
Locomotion
Locomotion - physiology
Male
Models, Biological
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Muscle, Skeletal - innervation
Muscles
Musculoskeletal Physiological Phenomena
Musculoskeletal system
Neurobiology
Neurosciences
Obstacle avoidance
Obstacles
Original Paper
Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ
Physiology
Psychomotor Performance - physiology
Rats
Rats, Wistar
Robotics
Rodents
Simulation
Vertebrates: nervous system and sense organs
title Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20of%20phase%20resetting%20and%20interlimb%20coordination%20to%20the%20adaptive%20control%20of%20hindlimb%20obstacle%20avoidance%20during%20locomotion%20in%20rats:%20a%20simulation%20study&rft.jtitle=Biological%20cybernetics&rft.au=Aoi,%20Shinya&rft.date=2013-04-01&rft.volume=107&rft.issue=2&rft.spage=201&rft.epage=216&rft.pages=201-216&rft.issn=0340-1200&rft.eissn=1432-0770&rft.coden=BICYAF&rft_id=info:doi/10.1007/s00422-013-0546-6&rft_dat=%3Cproquest_cross%3E1349451483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322591175&rft_id=info:pmid/23430278&rfr_iscdi=true