Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system

Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2015-05, Vol.38 (7), p.1405-1417
1. Verfasser: Yu, Shengqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1417
container_issue 7
container_start_page 1405
container_title Mathematical methods in the applied sciences
container_volume 38
creator Yu, Shengqi
description Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685805183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685805183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</originalsourceid><addsrcrecordid>eNp10NtKAzEQBuAgCtYD-AgL3nizmmw2h73UolW0SkHxMozpRKN7MmnV-vRGKoqCDMPcfPwMPyE7jO4zSouDpoF9zoRYIQNGqypnpZKrZECZonlZsHKdbMT4SCnVjBUDMrmFF8zvAsKTb--z_gHbrknbZq4LGWT32GKA2r_jNIs9zDzU9SLrMfhu6m02hAZihPy0q5ssLuIMmy2y5qCOuP11N8nNyfH18DS_uBqdDQ8vcitoKXI1lRItaMqs1RVYkCJNIe-049KVuigrTF9KWQrHtEOw3KkKtFJMW6Uc3yR7y9w-dM9zjDPT-GixrqHFbh4Nk1poKpjmie7-oY_dPLTpu6QUpaqUnP8E2tDFGNCZPvgGwsIwaj67Nalb89ltovmSvvoaF_86Mx4f_vY-NfT27SE8Gam4Eub2cmSOJuxofE6FKfgHIOyIWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670074633</pqid></control><display><type>article</type><title>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</title><source>Access via Wiley Online Library</source><creator>Yu, Shengqi</creator><creatorcontrib>Yu, Shengqi</creatorcontrib><description>Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3155</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>blow up ; Conservation laws ; Fluid dynamics ; Formations ; Mathematical analysis ; Partial differential equations ; Singularities ; two-component μ-CH system</subject><ispartof>Mathematical methods in the applied sciences, 2015-05, Vol.38 (7), p.1405-1417</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</citedby><cites>FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yu, Shengqi</creatorcontrib><title>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>blow up</subject><subject>Conservation laws</subject><subject>Fluid dynamics</subject><subject>Formations</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Singularities</subject><subject>two-component μ-CH system</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10NtKAzEQBuAgCtYD-AgL3nizmmw2h73UolW0SkHxMozpRKN7MmnV-vRGKoqCDMPcfPwMPyE7jO4zSouDpoF9zoRYIQNGqypnpZKrZECZonlZsHKdbMT4SCnVjBUDMrmFF8zvAsKTb--z_gHbrknbZq4LGWT32GKA2r_jNIs9zDzU9SLrMfhu6m02hAZihPy0q5ssLuIMmy2y5qCOuP11N8nNyfH18DS_uBqdDQ8vcitoKXI1lRItaMqs1RVYkCJNIe-049KVuigrTF9KWQrHtEOw3KkKtFJMW6Uc3yR7y9w-dM9zjDPT-GixrqHFbh4Nk1poKpjmie7-oY_dPLTpu6QUpaqUnP8E2tDFGNCZPvgGwsIwaj67Nalb89ltovmSvvoaF_86Mx4f_vY-NfT27SE8Gam4Eub2cmSOJuxofE6FKfgHIOyIWw</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Yu, Shengqi</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20150515</creationdate><title>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</title><author>Yu, Shengqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>blow up</topic><topic>Conservation laws</topic><topic>Fluid dynamics</topic><topic>Formations</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Singularities</topic><topic>two-component μ-CH system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Shengqi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Shengqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2015-05-15</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1405</spage><epage>1417</epage><pages>1405-1417</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.3155</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2015-05, Vol.38 (7), p.1405-1417
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1685805183
source Access via Wiley Online Library
subjects blow up
Conservation laws
Fluid dynamics
Formations
Mathematical analysis
Partial differential equations
Singularities
two-component μ-CH system
title Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave-breaking%20phenomenon%20for%20a%20generalized%20spatially%20periodic%20Camassa-Holm%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yu,%20Shengqi&rft.date=2015-05-15&rft.volume=38&rft.issue=7&rft.spage=1405&rft.epage=1417&rft.pages=1405-1417&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3155&rft_dat=%3Cproquest_cross%3E1685805183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670074633&rft_id=info:pmid/&rfr_iscdi=true