Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system
Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2015-05, Vol.38 (7), p.1405-1417 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1417 |
---|---|
container_issue | 7 |
container_start_page | 1405 |
container_title | Mathematical methods in the applied sciences |
container_volume | 38 |
creator | Yu, Shengqi |
description | Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685805183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685805183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</originalsourceid><addsrcrecordid>eNp10NtKAzEQBuAgCtYD-AgL3nizmmw2h73UolW0SkHxMozpRKN7MmnV-vRGKoqCDMPcfPwMPyE7jO4zSouDpoF9zoRYIQNGqypnpZKrZECZonlZsHKdbMT4SCnVjBUDMrmFF8zvAsKTb--z_gHbrknbZq4LGWT32GKA2r_jNIs9zDzU9SLrMfhu6m02hAZihPy0q5ssLuIMmy2y5qCOuP11N8nNyfH18DS_uBqdDQ8vcitoKXI1lRItaMqs1RVYkCJNIe-049KVuigrTF9KWQrHtEOw3KkKtFJMW6Uc3yR7y9w-dM9zjDPT-GixrqHFbh4Nk1poKpjmie7-oY_dPLTpu6QUpaqUnP8E2tDFGNCZPvgGwsIwaj67Nalb89ltovmSvvoaF_86Mx4f_vY-NfT27SE8Gam4Eub2cmSOJuxofE6FKfgHIOyIWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670074633</pqid></control><display><type>article</type><title>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</title><source>Access via Wiley Online Library</source><creator>Yu, Shengqi</creator><creatorcontrib>Yu, Shengqi</creatorcontrib><description>Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3155</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>blow up ; Conservation laws ; Fluid dynamics ; Formations ; Mathematical analysis ; Partial differential equations ; Singularities ; two-component μ-CH system</subject><ispartof>Mathematical methods in the applied sciences, 2015-05, Vol.38 (7), p.1405-1417</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</citedby><cites>FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yu, Shengqi</creatorcontrib><title>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>blow up</subject><subject>Conservation laws</subject><subject>Fluid dynamics</subject><subject>Formations</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Singularities</subject><subject>two-component μ-CH system</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10NtKAzEQBuAgCtYD-AgL3nizmmw2h73UolW0SkHxMozpRKN7MmnV-vRGKoqCDMPcfPwMPyE7jO4zSouDpoF9zoRYIQNGqypnpZKrZECZonlZsHKdbMT4SCnVjBUDMrmFF8zvAsKTb--z_gHbrknbZq4LGWT32GKA2r_jNIs9zDzU9SLrMfhu6m02hAZihPy0q5ssLuIMmy2y5qCOuP11N8nNyfH18DS_uBqdDQ8vcitoKXI1lRItaMqs1RVYkCJNIe-049KVuigrTF9KWQrHtEOw3KkKtFJMW6Uc3yR7y9w-dM9zjDPT-GixrqHFbh4Nk1poKpjmie7-oY_dPLTpu6QUpaqUnP8E2tDFGNCZPvgGwsIwaj67Nalb89ltovmSvvoaF_86Mx4f_vY-NfT27SE8Gam4Eub2cmSOJuxofE6FKfgHIOyIWw</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Yu, Shengqi</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20150515</creationdate><title>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</title><author>Yu, Shengqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5045-7d66eca801cc89aca6565626b8f36f48249e0006645f18feac3f79a87718c77f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>blow up</topic><topic>Conservation laws</topic><topic>Fluid dynamics</topic><topic>Formations</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Singularities</topic><topic>two-component μ-CH system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Shengqi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Shengqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2015-05-15</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1405</spage><epage>1417</epage><pages>1405-1417</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.3155</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2015-05, Vol.38 (7), p.1405-1417 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685805183 |
source | Access via Wiley Online Library |
subjects | blow up Conservation laws Fluid dynamics Formations Mathematical analysis Partial differential equations Singularities two-component μ-CH system |
title | Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave-breaking%20phenomenon%20for%20a%20generalized%20spatially%20periodic%20Camassa-Holm%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yu,%20Shengqi&rft.date=2015-05-15&rft.volume=38&rft.issue=7&rft.spage=1405&rft.epage=1417&rft.pages=1405-1417&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3155&rft_dat=%3Cproquest_cross%3E1685805183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670074633&rft_id=info:pmid/&rfr_iscdi=true |