Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium
Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2013-11, Vol.235, p.875-880 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 880 |
---|---|
container_issue | |
container_start_page | 875 |
container_title | Surface & coatings technology |
container_volume | 235 |
creator | Xu, Ruizhen Yang, Xiongbo Jiang, Jiang Li, Penghui Wu, Guosong Chu, Paul K. |
description | Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage.
•Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture. |
doi_str_mv | 10.1016/j.surfcoat.2013.09.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685804628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897213008736</els_id><sourcerecordid>1685804628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhStGE9vRVzBsTNxUDVAUFDvNZEZNJnGja0LBpYdOUbRATewn8jWl0q0uxxV_555Dztc0bwnuCCb8-tDlNTkTdekoJn2HZYcpe9bsyChk2_dMPG92mA6iHaWgL5tXOR8wxkRItmt-3ToHpmQUHTIPKQa_BuTjgnw4znopumyHxzgXvQdUt-UBkIkpxbw9JMg-F70YQHqxyJxKNDEc69TkZ19Om61d9fzPe5PFn6c9LKgG5KDb6tNe0sCiyUcL-6StnmZAQe-XGrGG180Lp-cMby7rVfP97vbbzef2_uunLzcf71vDmCytmdxgiTQwcIEnBo4CZ65eDFRoISz0HKymgorRslFPnA-SWSsps2zqydhfNe_PvscUf6yQiwo-G5jr7yCuWRE-DiNmnP6PVPCeYznwKuVnqam95QROHZMPOp0UwWqDqA7qD0S1QVRYqgqxDr67ZOhs9OxSrdrnv9N0pAPBctN9OOugdvPoIalsPFQs1qeKV9non4r6DYWku2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676360956</pqid></control><display><type>article</type><title>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Ruizhen ; Yang, Xiongbo ; Jiang, Jiang ; Li, Penghui ; Wu, Guosong ; Chu, Paul K.</creator><creatorcontrib>Xu, Ruizhen ; Yang, Xiongbo ; Jiang, Jiang ; Li, Penghui ; Wu, Guosong ; Chu, Paul K.</creatorcontrib><description>Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage.
•Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2013.09.024</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Biocompatibility ; Biomedical materials ; Chromium ; Corrosion ; Corrosion environments ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Electric potential ; Exact sciences and technology ; Ion implantation ; Magnesium ; Materials science ; Metals. Metallurgy ; Osteoblasts ; Other surface treatments ; Physics ; Production techniques ; Protective coatings ; Surface treatment ; Surface treatments ; Voltage</subject><ispartof>Surface & coatings technology, 2013-11, Vol.235, p.875-880</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</citedby><cites>FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2013.09.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28251094$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ruizhen</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Jiang, Jiang</creatorcontrib><creatorcontrib>Li, Penghui</creatorcontrib><creatorcontrib>Wu, Guosong</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><title>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</title><title>Surface & coatings technology</title><description>Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage.
•Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.</description><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chromium</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Ion implantation</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Osteoblasts</subject><subject>Other surface treatments</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Protective coatings</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Voltage</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc2OFCEUhStGE9vRVzBsTNxUDVAUFDvNZEZNJnGja0LBpYdOUbRATewn8jWl0q0uxxV_555Dztc0bwnuCCb8-tDlNTkTdekoJn2HZYcpe9bsyChk2_dMPG92mA6iHaWgL5tXOR8wxkRItmt-3ToHpmQUHTIPKQa_BuTjgnw4znopumyHxzgXvQdUt-UBkIkpxbw9JMg-F70YQHqxyJxKNDEc69TkZ19Om61d9fzPe5PFn6c9LKgG5KDb6tNe0sCiyUcL-6StnmZAQe-XGrGG180Lp-cMby7rVfP97vbbzef2_uunLzcf71vDmCytmdxgiTQwcIEnBo4CZ65eDFRoISz0HKymgorRslFPnA-SWSsps2zqydhfNe_PvscUf6yQiwo-G5jr7yCuWRE-DiNmnP6PVPCeYznwKuVnqam95QROHZMPOp0UwWqDqA7qD0S1QVRYqgqxDr67ZOhs9OxSrdrnv9N0pAPBctN9OOugdvPoIalsPFQs1qeKV9non4r6DYWku2s</recordid><startdate>20131125</startdate><enddate>20131125</enddate><creator>Xu, Ruizhen</creator><creator>Yang, Xiongbo</creator><creator>Jiang, Jiang</creator><creator>Li, Penghui</creator><creator>Wu, Guosong</creator><creator>Chu, Paul K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20131125</creationdate><title>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</title><author>Xu, Ruizhen ; Yang, Xiongbo ; Jiang, Jiang ; Li, Penghui ; Wu, Guosong ; Chu, Paul K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chromium</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Ion implantation</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Osteoblasts</topic><topic>Other surface treatments</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Protective coatings</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ruizhen</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Jiang, Jiang</creatorcontrib><creatorcontrib>Li, Penghui</creatorcontrib><creatorcontrib>Wu, Guosong</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ruizhen</au><au>Yang, Xiongbo</au><au>Jiang, Jiang</au><au>Li, Penghui</au><au>Wu, Guosong</au><au>Chu, Paul K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</atitle><jtitle>Surface & coatings technology</jtitle><date>2013-11-25</date><risdate>2013</risdate><volume>235</volume><spage>875</spage><epage>880</epage><pages>875-880</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage.
•Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2013.09.024</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2013-11, Vol.235, p.875-880 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685804628 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Biocompatibility Biomedical materials Chromium Corrosion Corrosion environments Corrosion resistance Cross-disciplinary physics: materials science rheology Electric potential Exact sciences and technology Ion implantation Magnesium Materials science Metals. Metallurgy Osteoblasts Other surface treatments Physics Production techniques Protective coatings Surface treatment Surface treatments Voltage |
title | Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20chromium%20ion%20implantation%20voltage%20on%20the%20corrosion%20resistance%20and%20cytocompatibility%20of%20dual%20chromium%20and%20oxygen%20plasma-ion-implanted%20biodegradable%20magnesium&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Xu,%20Ruizhen&rft.date=2013-11-25&rft.volume=235&rft.spage=875&rft.epage=880&rft.pages=875-880&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2013.09.024&rft_dat=%3Cproquest_cross%3E1685804628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676360956&rft_id=info:pmid/&rft_els_id=S0257897213008736&rfr_iscdi=true |