Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium

Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2013-11, Vol.235, p.875-880
Hauptverfasser: Xu, Ruizhen, Yang, Xiongbo, Jiang, Jiang, Li, Penghui, Wu, Guosong, Chu, Paul K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue
container_start_page 875
container_title Surface & coatings technology
container_volume 235
creator Xu, Ruizhen
Yang, Xiongbo
Jiang, Jiang
Li, Penghui
Wu, Guosong
Chu, Paul K.
description Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage. •Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.
doi_str_mv 10.1016/j.surfcoat.2013.09.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685804628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897213008736</els_id><sourcerecordid>1685804628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhStGE9vRVzBsTNxUDVAUFDvNZEZNJnGja0LBpYdOUbRATewn8jWl0q0uxxV_555Dztc0bwnuCCb8-tDlNTkTdekoJn2HZYcpe9bsyChk2_dMPG92mA6iHaWgL5tXOR8wxkRItmt-3ToHpmQUHTIPKQa_BuTjgnw4znopumyHxzgXvQdUt-UBkIkpxbw9JMg-F70YQHqxyJxKNDEc69TkZ19Om61d9fzPe5PFn6c9LKgG5KDb6tNe0sCiyUcL-6StnmZAQe-XGrGG180Lp-cMby7rVfP97vbbzef2_uunLzcf71vDmCytmdxgiTQwcIEnBo4CZ65eDFRoISz0HKymgorRslFPnA-SWSsps2zqydhfNe_PvscUf6yQiwo-G5jr7yCuWRE-DiNmnP6PVPCeYznwKuVnqam95QROHZMPOp0UwWqDqA7qD0S1QVRYqgqxDr67ZOhs9OxSrdrnv9N0pAPBctN9OOugdvPoIalsPFQs1qeKV9non4r6DYWku2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676360956</pqid></control><display><type>article</type><title>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Ruizhen ; Yang, Xiongbo ; Jiang, Jiang ; Li, Penghui ; Wu, Guosong ; Chu, Paul K.</creator><creatorcontrib>Xu, Ruizhen ; Yang, Xiongbo ; Jiang, Jiang ; Li, Penghui ; Wu, Guosong ; Chu, Paul K.</creatorcontrib><description>Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage. •Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2013.09.024</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Biocompatibility ; Biomedical materials ; Chromium ; Corrosion ; Corrosion environments ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Electric potential ; Exact sciences and technology ; Ion implantation ; Magnesium ; Materials science ; Metals. Metallurgy ; Osteoblasts ; Other surface treatments ; Physics ; Production techniques ; Protective coatings ; Surface treatment ; Surface treatments ; Voltage</subject><ispartof>Surface &amp; coatings technology, 2013-11, Vol.235, p.875-880</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</citedby><cites>FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2013.09.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28251094$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ruizhen</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Jiang, Jiang</creatorcontrib><creatorcontrib>Li, Penghui</creatorcontrib><creatorcontrib>Wu, Guosong</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><title>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</title><title>Surface &amp; coatings technology</title><description>Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage. •Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.</description><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chromium</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Ion implantation</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Osteoblasts</subject><subject>Other surface treatments</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Protective coatings</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Voltage</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc2OFCEUhStGE9vRVzBsTNxUDVAUFDvNZEZNJnGja0LBpYdOUbRATewn8jWl0q0uxxV_555Dztc0bwnuCCb8-tDlNTkTdekoJn2HZYcpe9bsyChk2_dMPG92mA6iHaWgL5tXOR8wxkRItmt-3ToHpmQUHTIPKQa_BuTjgnw4znopumyHxzgXvQdUt-UBkIkpxbw9JMg-F70YQHqxyJxKNDEc69TkZ19Om61d9fzPe5PFn6c9LKgG5KDb6tNe0sCiyUcL-6StnmZAQe-XGrGG180Lp-cMby7rVfP97vbbzef2_uunLzcf71vDmCytmdxgiTQwcIEnBo4CZ65eDFRoISz0HKymgorRslFPnA-SWSsps2zqydhfNe_PvscUf6yQiwo-G5jr7yCuWRE-DiNmnP6PVPCeYznwKuVnqam95QROHZMPOp0UwWqDqA7qD0S1QVRYqgqxDr67ZOhs9OxSrdrnv9N0pAPBctN9OOugdvPoIalsPFQs1qeKV9non4r6DYWku2s</recordid><startdate>20131125</startdate><enddate>20131125</enddate><creator>Xu, Ruizhen</creator><creator>Yang, Xiongbo</creator><creator>Jiang, Jiang</creator><creator>Li, Penghui</creator><creator>Wu, Guosong</creator><creator>Chu, Paul K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20131125</creationdate><title>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</title><author>Xu, Ruizhen ; Yang, Xiongbo ; Jiang, Jiang ; Li, Penghui ; Wu, Guosong ; Chu, Paul K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cbf5d19ce5670b4ef2e64f19c527a77de36eda27278d48ab66594dd924d4b3183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chromium</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Ion implantation</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Osteoblasts</topic><topic>Other surface treatments</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Protective coatings</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ruizhen</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Jiang, Jiang</creatorcontrib><creatorcontrib>Li, Penghui</creatorcontrib><creatorcontrib>Wu, Guosong</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ruizhen</au><au>Yang, Xiongbo</au><au>Jiang, Jiang</au><au>Li, Penghui</au><au>Wu, Guosong</au><au>Chu, Paul K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2013-11-25</date><risdate>2013</risdate><volume>235</volume><spage>875</spage><epage>880</epage><pages>875-880</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Magnesium is modified by chromium ion implantation at different voltages followed by oxygen ion implantation to improve the corrosion resistance and cytocompatibility. All the implanted samples exhibit improved corrosion resistance and the ones implanted at a lower voltage yield better results. The chromium-rich layer with chromium in the metallic state beneath the protective oxide film may undermine the electrochemical stability by inducing galvanic effects which lead to poorer corrosion resistance. Although dual Cr–O plasma immersion ion implantation promotes osteoblast adhesion and proliferation on the magnesium samples and produces a more favorable environment for osteoblast growth, optimal results require careful selection of the ion implantation voltage. •Cr–O ion with different implantation parameters was implanted into Mg.•Smallest Cr implanted voltage sample shows best corrosion resistance.•Treated sample exhibits good cytocompatibility in osteoblast culture.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2013.09.024</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2013-11, Vol.235, p.875-880
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1685804628
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Biocompatibility
Biomedical materials
Chromium
Corrosion
Corrosion environments
Corrosion resistance
Cross-disciplinary physics: materials science
rheology
Electric potential
Exact sciences and technology
Ion implantation
Magnesium
Materials science
Metals. Metallurgy
Osteoblasts
Other surface treatments
Physics
Production techniques
Protective coatings
Surface treatment
Surface treatments
Voltage
title Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20chromium%20ion%20implantation%20voltage%20on%20the%20corrosion%20resistance%20and%20cytocompatibility%20of%20dual%20chromium%20and%20oxygen%20plasma-ion-implanted%20biodegradable%20magnesium&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Xu,%20Ruizhen&rft.date=2013-11-25&rft.volume=235&rft.spage=875&rft.epage=880&rft.pages=875-880&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2013.09.024&rft_dat=%3Cproquest_cross%3E1685804628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676360956&rft_id=info:pmid/&rft_els_id=S0257897213008736&rfr_iscdi=true