Using structural disorder to enhance the magnetism and spin-polarization in FexSi(1 - x) thin films for spintronics

Amorphous Fe sub(x)Si sub(1 - x) thin films exhibit a striking enhancement in magnetization compared to crystalline films with the same composition (0.45 < x < 0.75), and x-ray magnetic circular dichroism reveals an enhancement in both spin and orbital moments in the amorphous films. Density f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2014-06, Vol.1 (2), p.1-9
Hauptverfasser: Karel, J, Zhang, Y N, Bordel, C, Stone, K H, Chen, T Y, Jenkins, C A, Smith, David J, Hu, J, Wu, R Q, Heald, S M, Kortright, J B, Hellman, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2
container_start_page 1
container_title Materials research express
container_volume 1
creator Karel, J
Zhang, Y N
Bordel, C
Stone, K H
Chen, T Y
Jenkins, C A
Smith, David J
Hu, J
Wu, R Q
Heald, S M
Kortright, J B
Hellman, F
description Amorphous Fe sub(x)Si sub(1 - x) thin films exhibit a striking enhancement in magnetization compared to crystalline films with the same composition (0.45 < x < 0.75), and x-ray magnetic circular dichroism reveals an enhancement in both spin and orbital moments in the amorphous films. Density functional theory (DFT) calculations reproduce this enhanced magnetization and also show a relatively large spin-polarization at the Fermi energy, also seen experimentally in Andreev reflection. Theory and experiment show that the amorphous materials have a decreased number of nearest neighbors and reduced number density relative to the crystalline samples of the same composition; the associated decrease in Fe-Si neighbors reduces the hybridization of Fe orbitals, leading to the enhanced moment.
doi_str_mv 10.1088/2053-1591/1/2/026102
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685804068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685804068</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16858040683</originalsourceid><addsrcrecordid>eNqVi0FLw0AQRhdRsGj_gYc51kPM7KaJ6Vks3tVzWZJJO2UzG3c2UPz1FhHx6un7eLxnzJ3FB4ttWzqsq8LWG1va0pXoGovuwix-8eWff22WqkdEdI-bqnbNwui7suxBc5q7PCcfoGeNqacEOQLJwUtHkA8Eo98LZdYRvPSgE0sxxeATf_rMUYAFtnR65ZWFAk735-ZMBg6jwhDTd5BTFO701lwNPigtf_bGrLbPb08vxZTix0yadyNrRyF4oTjrzjZt3eIam7b6h_oFx-dXKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685804068</pqid></control><display><type>article</type><title>Using structural disorder to enhance the magnetism and spin-polarization in FexSi(1 - x) thin films for spintronics</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics Journals</source><creator>Karel, J ; Zhang, Y N ; Bordel, C ; Stone, K H ; Chen, T Y ; Jenkins, C A ; Smith, David J ; Hu, J ; Wu, R Q ; Heald, S M ; Kortright, J B ; Hellman, F</creator><creatorcontrib>Karel, J ; Zhang, Y N ; Bordel, C ; Stone, K H ; Chen, T Y ; Jenkins, C A ; Smith, David J ; Hu, J ; Wu, R Q ; Heald, S M ; Kortright, J B ; Hellman, F</creatorcontrib><description>Amorphous Fe sub(x)Si sub(1 - x) thin films exhibit a striking enhancement in magnetization compared to crystalline films with the same composition (0.45 &lt; x &lt; 0.75), and x-ray magnetic circular dichroism reveals an enhancement in both spin and orbital moments in the amorphous films. Density functional theory (DFT) calculations reproduce this enhanced magnetization and also show a relatively large spin-polarization at the Fermi energy, also seen experimentally in Andreev reflection. Theory and experiment show that the amorphous materials have a decreased number of nearest neighbors and reduced number density relative to the crystalline samples of the same composition; the associated decrease in Fe-Si neighbors reduces the hybridization of Fe orbitals, leading to the enhanced moment.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/1/2/026102</identifier><language>eng</language><subject>Crystal structure ; Density ; Density functional theory ; Fermi surfaces ; Iron ; Magnetization ; Mathematical analysis ; Orbitals ; Thin films</subject><ispartof>Materials research express, 2014-06, Vol.1 (2), p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Karel, J</creatorcontrib><creatorcontrib>Zhang, Y N</creatorcontrib><creatorcontrib>Bordel, C</creatorcontrib><creatorcontrib>Stone, K H</creatorcontrib><creatorcontrib>Chen, T Y</creatorcontrib><creatorcontrib>Jenkins, C A</creatorcontrib><creatorcontrib>Smith, David J</creatorcontrib><creatorcontrib>Hu, J</creatorcontrib><creatorcontrib>Wu, R Q</creatorcontrib><creatorcontrib>Heald, S M</creatorcontrib><creatorcontrib>Kortright, J B</creatorcontrib><creatorcontrib>Hellman, F</creatorcontrib><title>Using structural disorder to enhance the magnetism and spin-polarization in FexSi(1 - x) thin films for spintronics</title><title>Materials research express</title><description>Amorphous Fe sub(x)Si sub(1 - x) thin films exhibit a striking enhancement in magnetization compared to crystalline films with the same composition (0.45 &lt; x &lt; 0.75), and x-ray magnetic circular dichroism reveals an enhancement in both spin and orbital moments in the amorphous films. Density functional theory (DFT) calculations reproduce this enhanced magnetization and also show a relatively large spin-polarization at the Fermi energy, also seen experimentally in Andreev reflection. Theory and experiment show that the amorphous materials have a decreased number of nearest neighbors and reduced number density relative to the crystalline samples of the same composition; the associated decrease in Fe-Si neighbors reduces the hybridization of Fe orbitals, leading to the enhanced moment.</description><subject>Crystal structure</subject><subject>Density</subject><subject>Density functional theory</subject><subject>Fermi surfaces</subject><subject>Iron</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Thin films</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVi0FLw0AQRhdRsGj_gYc51kPM7KaJ6Vks3tVzWZJJO2UzG3c2UPz1FhHx6un7eLxnzJ3FB4ttWzqsq8LWG1va0pXoGovuwix-8eWff22WqkdEdI-bqnbNwui7suxBc5q7PCcfoGeNqacEOQLJwUtHkA8Eo98LZdYRvPSgE0sxxeATf_rMUYAFtnR65ZWFAk735-ZMBg6jwhDTd5BTFO701lwNPigtf_bGrLbPb08vxZTix0yadyNrRyF4oTjrzjZt3eIam7b6h_oFx-dXKg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Karel, J</creator><creator>Zhang, Y N</creator><creator>Bordel, C</creator><creator>Stone, K H</creator><creator>Chen, T Y</creator><creator>Jenkins, C A</creator><creator>Smith, David J</creator><creator>Hu, J</creator><creator>Wu, R Q</creator><creator>Heald, S M</creator><creator>Kortright, J B</creator><creator>Hellman, F</creator><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Using structural disorder to enhance the magnetism and spin-polarization in FexSi(1 - x) thin films for spintronics</title><author>Karel, J ; Zhang, Y N ; Bordel, C ; Stone, K H ; Chen, T Y ; Jenkins, C A ; Smith, David J ; Hu, J ; Wu, R Q ; Heald, S M ; Kortright, J B ; Hellman, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16858040683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Crystal structure</topic><topic>Density</topic><topic>Density functional theory</topic><topic>Fermi surfaces</topic><topic>Iron</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karel, J</creatorcontrib><creatorcontrib>Zhang, Y N</creatorcontrib><creatorcontrib>Bordel, C</creatorcontrib><creatorcontrib>Stone, K H</creatorcontrib><creatorcontrib>Chen, T Y</creatorcontrib><creatorcontrib>Jenkins, C A</creatorcontrib><creatorcontrib>Smith, David J</creatorcontrib><creatorcontrib>Hu, J</creatorcontrib><creatorcontrib>Wu, R Q</creatorcontrib><creatorcontrib>Heald, S M</creatorcontrib><creatorcontrib>Kortright, J B</creatorcontrib><creatorcontrib>Hellman, F</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karel, J</au><au>Zhang, Y N</au><au>Bordel, C</au><au>Stone, K H</au><au>Chen, T Y</au><au>Jenkins, C A</au><au>Smith, David J</au><au>Hu, J</au><au>Wu, R Q</au><au>Heald, S M</au><au>Kortright, J B</au><au>Hellman, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using structural disorder to enhance the magnetism and spin-polarization in FexSi(1 - x) thin films for spintronics</atitle><jtitle>Materials research express</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>1</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Amorphous Fe sub(x)Si sub(1 - x) thin films exhibit a striking enhancement in magnetization compared to crystalline films with the same composition (0.45 &lt; x &lt; 0.75), and x-ray magnetic circular dichroism reveals an enhancement in both spin and orbital moments in the amorphous films. Density functional theory (DFT) calculations reproduce this enhanced magnetization and also show a relatively large spin-polarization at the Fermi energy, also seen experimentally in Andreev reflection. Theory and experiment show that the amorphous materials have a decreased number of nearest neighbors and reduced number density relative to the crystalline samples of the same composition; the associated decrease in Fe-Si neighbors reduces the hybridization of Fe orbitals, leading to the enhanced moment.</abstract><doi>10.1088/2053-1591/1/2/026102</doi></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2014-06, Vol.1 (2), p.1-9
issn 2053-1591
2053-1591
language eng
recordid cdi_proquest_miscellaneous_1685804068
source Institute of Physics IOPscience extra; Institute of Physics Journals
subjects Crystal structure
Density
Density functional theory
Fermi surfaces
Iron
Magnetization
Mathematical analysis
Orbitals
Thin films
title Using structural disorder to enhance the magnetism and spin-polarization in FexSi(1 - x) thin films for spintronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20structural%20disorder%20to%20enhance%20the%20magnetism%20and%20spin-polarization%20in%20FexSi(1%20-%20x)%20thin%20films%20for%20spintronics&rft.jtitle=Materials%20research%20express&rft.au=Karel,%20J&rft.date=2014-06-01&rft.volume=1&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/1/2/026102&rft_dat=%3Cproquest%3E1685804068%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685804068&rft_id=info:pmid/&rfr_iscdi=true