Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison

The U.S. Cooperative Observer Program (COOP) network was formed in the early 1890s to provide daily observations of temperature and precipitation. However, manual observations from naturally aspirated temperature sensors and unshielded precipitation gauges often led to uncertainties in atmospheric m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2015-04, Vol.32 (4), p.703-721
Hauptverfasser: Leeper, Ronald D, Rennie, Jared, Palecki, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The U.S. Cooperative Observer Program (COOP) network was formed in the early 1890s to provide daily observations of temperature and precipitation. However, manual observations from naturally aspirated temperature sensors and unshielded precipitation gauges often led to uncertainties in atmospheric measurements. Advancements in observational technology (ventilated temperature sensors, well-shielded precipitation gauges) and measurement techniques (automation and redundant sensors), which improve observation quality, were adopted by NOAA’s National Climatic Data Center (NCDC) into the establishment of the U.S. Climate Reference Network (USCRN). USCRN was designed to provide high-quality and continuous observations to monitor long-term temperature and precipitation trends, and to provide an independent reference to compare to other networks. The purpose of this study is to evaluate how diverse technological and operational choices between the USCRN and COOP programs impact temperature and precipitation observations. Naturally aspirated COOP sensors generally had warmer (+0.48°C) daily maximum and cooler (−0.36°C) minimum temperatures than USCRN, with considerable variability among stations. For precipitation, COOP reported slightly more precipitation overall (1.5%) with network differences varying seasonally. COOP gauges were sensitive to wind biases (no shielding), which are enhanced over winter when COOP observed (10.7%) less precipitation than USCRN. Conversely, wetting factor and gauge evaporation, which dominate in summer, were sources of bias for USCRN, leading to wetter COOP observations over warmer months. Inconsistencies in COOP observations (e.g., multiday observations, time shifts, recording errors) complicated network comparisons and led to unique bias profiles that evolved over time with changes in instrumentation and primary observer.
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-14-00172.1