Green's Functions of Wave Equations in
We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equatio...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2015-06, Vol.216 (3), p.881-903 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 903 |
---|---|
container_issue | 3 |
container_start_page | 881 |
container_title | Archive for rational mechanics and analysis |
container_volume | 216 |
creator | Deng, Shijin Wang, Weike Yu, Shih-Hsien |
description | We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave. |
doi_str_mv | 10.1007/s00205-014-0821-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685801824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685801824</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16858018243</originalsourceid><addsrcrecordid>eNqViksKwjAUAB-iYP0cwF1W6ib6kvQT19LWAwguSygpVGpi-xrPL6IXcDXMMAAbgQeBmB0JUWLCUcQctRRcTiASsZIc00xNIUJExU-JzOawILp_VKo0gm05WOt2xIrg6rH1jphv2M28LMv7YL6ldSuYNaYju_5xCfsiv54v_Dn4Plgaq0dLte0646wPVIlUJxqFlrH6Y30Dxg45Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685801824</pqid></control><display><type>article</type><title>Green's Functions of Wave Equations in</title><source>SpringerLink Journals</source><creator>Deng, Shijin ; Wang, Weike ; Yu, Shih-Hsien</creator><creatorcontrib>Deng, Shijin ; Wang, Weike ; Yu, Shih-Hsien</creatorcontrib><description>We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-014-0821-2</identifier><language>eng</language><subject>Boundaries ; Cancellation ; Green's functions ; Mathematical analysis ; Operators ; Surface waves ; Three dimensional ; Wave equations</subject><ispartof>Archive for rational mechanics and analysis, 2015-06, Vol.216 (3), p.881-903</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Deng, Shijin</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Yu, Shih-Hsien</creatorcontrib><title>Green's Functions of Wave Equations in</title><title>Archive for rational mechanics and analysis</title><description>We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.</description><subject>Boundaries</subject><subject>Cancellation</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Surface waves</subject><subject>Three dimensional</subject><subject>Wave equations</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqViksKwjAUAB-iYP0cwF1W6ib6kvQT19LWAwguSygpVGpi-xrPL6IXcDXMMAAbgQeBmB0JUWLCUcQctRRcTiASsZIc00xNIUJExU-JzOawILp_VKo0gm05WOt2xIrg6rH1jphv2M28LMv7YL6ldSuYNaYju_5xCfsiv54v_Dn4Plgaq0dLte0646wPVIlUJxqFlrH6Y30Dxg45Rw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Deng, Shijin</creator><creator>Wang, Weike</creator><creator>Yu, Shih-Hsien</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Green's Functions of Wave Equations in</title><author>Deng, Shijin ; Wang, Weike ; Yu, Shih-Hsien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16858018243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Cancellation</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Surface waves</topic><topic>Three dimensional</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shijin</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Yu, Shih-Hsien</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shijin</au><au>Wang, Weike</au><au>Yu, Shih-Hsien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green's Functions of Wave Equations in</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>216</volume><issue>3</issue><spage>881</spage><epage>903</epage><pages>881-903</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.</abstract><doi>10.1007/s00205-014-0821-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2015-06, Vol.216 (3), p.881-903 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685801824 |
source | SpringerLink Journals |
subjects | Boundaries Cancellation Green's functions Mathematical analysis Operators Surface waves Three dimensional Wave equations |
title | Green's Functions of Wave Equations in |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green's%20Functions%20of%20Wave%20Equations%20in&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Deng,%20Shijin&rft.date=2015-06-01&rft.volume=216&rft.issue=3&rft.spage=881&rft.epage=903&rft.pages=881-903&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-014-0821-2&rft_dat=%3Cproquest%3E1685801824%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685801824&rft_id=info:pmid/&rfr_iscdi=true |