Green's Functions of Wave Equations in

We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2015-06, Vol.216 (3), p.881-903
Hauptverfasser: Deng, Shijin, Wang, Weike, Yu, Shih-Hsien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903
container_issue 3
container_start_page 881
container_title Archive for rational mechanics and analysis
container_volume 216
creator Deng, Shijin
Wang, Weike
Yu, Shih-Hsien
description We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.
doi_str_mv 10.1007/s00205-014-0821-2
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685801824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685801824</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16858018243</originalsourceid><addsrcrecordid>eNqViksKwjAUAB-iYP0cwF1W6ib6kvQT19LWAwguSygpVGpi-xrPL6IXcDXMMAAbgQeBmB0JUWLCUcQctRRcTiASsZIc00xNIUJExU-JzOawILp_VKo0gm05WOt2xIrg6rH1jphv2M28LMv7YL6ldSuYNaYju_5xCfsiv54v_Dn4Plgaq0dLte0646wPVIlUJxqFlrH6Y30Dxg45Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685801824</pqid></control><display><type>article</type><title>Green's Functions of Wave Equations in</title><source>SpringerLink Journals</source><creator>Deng, Shijin ; Wang, Weike ; Yu, Shih-Hsien</creator><creatorcontrib>Deng, Shijin ; Wang, Weike ; Yu, Shih-Hsien</creatorcontrib><description>We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-014-0821-2</identifier><language>eng</language><subject>Boundaries ; Cancellation ; Green's functions ; Mathematical analysis ; Operators ; Surface waves ; Three dimensional ; Wave equations</subject><ispartof>Archive for rational mechanics and analysis, 2015-06, Vol.216 (3), p.881-903</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Deng, Shijin</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Yu, Shih-Hsien</creatorcontrib><title>Green's Functions of Wave Equations in</title><title>Archive for rational mechanics and analysis</title><description>We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.</description><subject>Boundaries</subject><subject>Cancellation</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Surface waves</subject><subject>Three dimensional</subject><subject>Wave equations</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqViksKwjAUAB-iYP0cwF1W6ib6kvQT19LWAwguSygpVGpi-xrPL6IXcDXMMAAbgQeBmB0JUWLCUcQctRRcTiASsZIc00xNIUJExU-JzOawILp_VKo0gm05WOt2xIrg6rH1jphv2M28LMv7YL6ldSuYNaYju_5xCfsiv54v_Dn4Plgaq0dLte0646wPVIlUJxqFlrH6Y30Dxg45Rw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Deng, Shijin</creator><creator>Wang, Weike</creator><creator>Yu, Shih-Hsien</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Green's Functions of Wave Equations in</title><author>Deng, Shijin ; Wang, Weike ; Yu, Shih-Hsien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16858018243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Cancellation</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Surface waves</topic><topic>Three dimensional</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shijin</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Yu, Shih-Hsien</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shijin</au><au>Wang, Weike</au><au>Yu, Shih-Hsien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green's Functions of Wave Equations in</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>216</volume><issue>3</issue><spage>881</spage><epage>903</epage><pages>881-903</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.</abstract><doi>10.1007/s00205-014-0821-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2015-06, Vol.216 (3), p.881-903
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_miscellaneous_1685801824
source SpringerLink Journals
subjects Boundaries
Cancellation
Green's functions
Mathematical analysis
Operators
Surface waves
Three dimensional
Wave equations
title Green's Functions of Wave Equations in
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green's%20Functions%20of%20Wave%20Equations%20in&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Deng,%20Shijin&rft.date=2015-06-01&rft.volume=216&rft.issue=3&rft.spage=881&rft.epage=903&rft.pages=881-903&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-014-0821-2&rft_dat=%3Cproquest%3E1685801824%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685801824&rft_id=info:pmid/&rfr_iscdi=true