Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties
Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lyin...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2014-12, Vol.26 (48), p.485012-485012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485012 |
---|---|
container_issue | 48 |
container_start_page | 485012 |
container_title | Journal of physics. Condensed matter |
container_volume | 26 |
creator | Despoja, V Maruši, L |
description | Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface. |
doi_str_mv | 10.1088/0953-8984/26/48/485012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685800666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685800666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMotlb_QsnRy9pk87HpUYpfUPBiwVuYZhPZkt1sk92D_96U1l4VBsJMnnkneQehOSUPlCi1IEvBCrVUfFHKBVc5BKHlBZpSJmkhufq8RNMzNEE3Ke0IIVwxfo0mpWCqyvUp2m6SxcHhNEYHxuLeQ2pDl7ALEbfQNf3oYWhCd4BC_MoVg9vgrRm9xfsRUtNDHBrjbcLQ1Tj0OQGP-xh6my9sukVXDnyyd6dzhjbPTx-r12L9_vK2elwXJj9mKKRb1qykYkuYsNQJYRTUVNAtgANb105KV1vCASoDysn8XyYNGF4yuawMYzN0f9TNo_ejTYNum2Ss99DZMCZNpRKKECnlP1BOS0KqrD1D8oiaGFKK1uk-Ni3Eb02JPqxCH1zWB5d1KTVX-riK3Dg_zRi3ra3Pbb_eZ6A8Ak3o9S6Mscvu_KX6A7l7lVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641200742</pqid></control><display><type>article</type><title>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Despoja, V ; Maruši, L</creator><creatorcontrib>Despoja, V ; Maruši, L</creatorcontrib><description>Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/48/485012</identifier><identifier>PMID: 25387984</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Approximation ; Condensed matter ; Excitation ; Excitons ; Molecular orbitals ; optical spectra ; organic molecule ; Plasmons ; Separation ; Surface chemistry ; surface plasmons</subject><ispartof>Journal of physics. Condensed matter, 2014-12, Vol.26 (48), p.485012-485012</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</citedby><cites>FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/26/48/485012/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25387984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Despoja, V</creatorcontrib><creatorcontrib>Maruši, L</creatorcontrib><title>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.</description><subject>Approximation</subject><subject>Condensed matter</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Molecular orbitals</subject><subject>optical spectra</subject><subject>organic molecule</subject><subject>Plasmons</subject><subject>Separation</subject><subject>Surface chemistry</subject><subject>surface plasmons</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMotlb_QsnRy9pk87HpUYpfUPBiwVuYZhPZkt1sk92D_96U1l4VBsJMnnkneQehOSUPlCi1IEvBCrVUfFHKBVc5BKHlBZpSJmkhufq8RNMzNEE3Ke0IIVwxfo0mpWCqyvUp2m6SxcHhNEYHxuLeQ2pDl7ALEbfQNf3oYWhCd4BC_MoVg9vgrRm9xfsRUtNDHBrjbcLQ1Tj0OQGP-xh6my9sukVXDnyyd6dzhjbPTx-r12L9_vK2elwXJj9mKKRb1qykYkuYsNQJYRTUVNAtgANb105KV1vCASoDysn8XyYNGF4yuawMYzN0f9TNo_ejTYNum2Ss99DZMCZNpRKKECnlP1BOS0KqrD1D8oiaGFKK1uk-Ni3Eb02JPqxCH1zWB5d1KTVX-riK3Dg_zRi3ra3Pbb_eZ6A8Ak3o9S6Mscvu_KX6A7l7lVk</recordid><startdate>20141203</startdate><enddate>20141203</enddate><creator>Despoja, V</creator><creator>Maruši, L</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141203</creationdate><title>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</title><author>Despoja, V ; Maruši, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Condensed matter</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Molecular orbitals</topic><topic>optical spectra</topic><topic>organic molecule</topic><topic>Plasmons</topic><topic>Separation</topic><topic>Surface chemistry</topic><topic>surface plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Despoja, V</creatorcontrib><creatorcontrib>Maruši, L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Despoja, V</au><au>Maruši, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-12-03</date><risdate>2014</risdate><volume>26</volume><issue>48</issue><spage>485012</spage><epage>485012</epage><pages>485012-485012</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25387984</pmid><doi>10.1088/0953-8984/26/48/485012</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2014-12, Vol.26 (48), p.485012-485012 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_1685800666 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Approximation Condensed matter Excitation Excitons Molecular orbitals optical spectra organic molecule Plasmons Separation Surface chemistry surface plasmons |
title | Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20surface%20plasmons%20for%20manipulation%20of%20organic%20molecule%20quasiparticles%20and%20optical%20properties&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Despoja,%20V&rft.date=2014-12-03&rft.volume=26&rft.issue=48&rft.spage=485012&rft.epage=485012&rft.pages=485012-485012&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/48/485012&rft_dat=%3Cproquest_iop_j%3E1685800666%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641200742&rft_id=info:pmid/25387984&rfr_iscdi=true |