Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties

Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2014-12, Vol.26 (48), p.485012-485012
Hauptverfasser: Despoja, V, Maruši, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485012
container_issue 48
container_start_page 485012
container_title Journal of physics. Condensed matter
container_volume 26
creator Despoja, V
Maruši, L
description Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.
doi_str_mv 10.1088/0953-8984/26/48/485012
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685800666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685800666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMotlb_QsnRy9pk87HpUYpfUPBiwVuYZhPZkt1sk92D_96U1l4VBsJMnnkneQehOSUPlCi1IEvBCrVUfFHKBVc5BKHlBZpSJmkhufq8RNMzNEE3Ke0IIVwxfo0mpWCqyvUp2m6SxcHhNEYHxuLeQ2pDl7ALEbfQNf3oYWhCd4BC_MoVg9vgrRm9xfsRUtNDHBrjbcLQ1Tj0OQGP-xh6my9sukVXDnyyd6dzhjbPTx-r12L9_vK2elwXJj9mKKRb1qykYkuYsNQJYRTUVNAtgANb105KV1vCASoDysn8XyYNGF4yuawMYzN0f9TNo_ejTYNum2Ss99DZMCZNpRKKECnlP1BOS0KqrD1D8oiaGFKK1uk-Ni3Eb02JPqxCH1zWB5d1KTVX-riK3Dg_zRi3ra3Pbb_eZ6A8Ak3o9S6Mscvu_KX6A7l7lVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641200742</pqid></control><display><type>article</type><title>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Despoja, V ; Maruši, L</creator><creatorcontrib>Despoja, V ; Maruši, L</creatorcontrib><description>Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs &gt; 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/48/485012</identifier><identifier>PMID: 25387984</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Approximation ; Condensed matter ; Excitation ; Excitons ; Molecular orbitals ; optical spectra ; organic molecule ; Plasmons ; Separation ; Surface chemistry ; surface plasmons</subject><ispartof>Journal of physics. Condensed matter, 2014-12, Vol.26 (48), p.485012-485012</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</citedby><cites>FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/26/48/485012/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25387984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Despoja, V</creatorcontrib><creatorcontrib>Maruši, L</creatorcontrib><title>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs &gt; 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.</description><subject>Approximation</subject><subject>Condensed matter</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Molecular orbitals</subject><subject>optical spectra</subject><subject>organic molecule</subject><subject>Plasmons</subject><subject>Separation</subject><subject>Surface chemistry</subject><subject>surface plasmons</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMotlb_QsnRy9pk87HpUYpfUPBiwVuYZhPZkt1sk92D_96U1l4VBsJMnnkneQehOSUPlCi1IEvBCrVUfFHKBVc5BKHlBZpSJmkhufq8RNMzNEE3Ke0IIVwxfo0mpWCqyvUp2m6SxcHhNEYHxuLeQ2pDl7ALEbfQNf3oYWhCd4BC_MoVg9vgrRm9xfsRUtNDHBrjbcLQ1Tj0OQGP-xh6my9sukVXDnyyd6dzhjbPTx-r12L9_vK2elwXJj9mKKRb1qykYkuYsNQJYRTUVNAtgANb105KV1vCASoDysn8XyYNGF4yuawMYzN0f9TNo_ejTYNum2Ss99DZMCZNpRKKECnlP1BOS0KqrD1D8oiaGFKK1uk-Ni3Eb02JPqxCH1zWB5d1KTVX-riK3Dg_zRi3ra3Pbb_eZ6A8Ak3o9S6Mscvu_KX6A7l7lVk</recordid><startdate>20141203</startdate><enddate>20141203</enddate><creator>Despoja, V</creator><creator>Maruši, L</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141203</creationdate><title>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</title><author>Despoja, V ; Maruši, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6f9d3215b035e1f55c8ad151baafaeddf66fde04aa7ca8f650136cac423697c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Condensed matter</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Molecular orbitals</topic><topic>optical spectra</topic><topic>organic molecule</topic><topic>Plasmons</topic><topic>Separation</topic><topic>Surface chemistry</topic><topic>surface plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Despoja, V</creatorcontrib><creatorcontrib>Maruši, L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Despoja, V</au><au>Maruši, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-12-03</date><risdate>2014</risdate><volume>26</volume><issue>48</issue><spage>485012</spage><epage>485012</epage><pages>485012-485012</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 12 a.u.). For rs &gt; 5 the β exciton becomes infinitely sharp (Γ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25387984</pmid><doi>10.1088/0953-8984/26/48/485012</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2014-12, Vol.26 (48), p.485012-485012
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_1685800666
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Approximation
Condensed matter
Excitation
Excitons
Molecular orbitals
optical spectra
organic molecule
Plasmons
Separation
Surface chemistry
surface plasmons
title Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20surface%20plasmons%20for%20manipulation%20of%20organic%20molecule%20quasiparticles%20and%20optical%20properties&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Despoja,%20V&rft.date=2014-12-03&rft.volume=26&rft.issue=48&rft.spage=485012&rft.epage=485012&rft.pages=485012-485012&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/48/485012&rft_dat=%3Cproquest_iop_j%3E1685800666%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641200742&rft_id=info:pmid/25387984&rfr_iscdi=true